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Exploring High-Throughput Computing
Paradigm for Global Routing

Yiding Han, Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy

Abstract— With aggressive technology scaling, the complexity
of the global routing problem is poised to grow rapidly. Solving
such a large computational problem demands a high-throughput
hardware platform such as modern graphics processing units
(GPUs). In this paper, we explore a hybrid GPU–CPU high-
throughput computing environment as a scalable alternative
to the traditional CPU-based router. We introduce net-level
concurrency (NLC), which is a novel parallel model for router
algorithms and aims to exploit concurrency at the level of
individual nets. To efficiently uncover NLC, we design a scheduler
to create groups of nets that can be routed in parallel. At its
core, our scheduler employs a novel algorithm to dynamically
analyze data dependencies between multiple nets. We believe
such an algorithm can lay the foundation for uncovering data-
level parallelism in routing, which is a necessary requirement for
employing high-throughput hardware. Detailed simulation results
show an average of 4× speedup over NTHU-Route 2.0 with
negligible loss in solution quality. To the best of our knowledge,
this is the first work on utilizing GPUs for global routing.

Index Terms— Global routing, graphics processing unit, high
throughput computing.

I. INTRODUCTION

GLOBAL routing problem (GRP) is one of the most com-
putationally intensive processes in VLSI design. Since

the solution of the GRP is used to guide further optimizations
before tape-out, it also becomes a critical step in the design
cycle. Consequently, both the execution time and the solution
quality of the GRP substantially affect the chip timing, power,
manufacturability, as well as the time-to-market.

Aggressive technology scaling introduces several additional
constraints in the GRP, significantly increasing the complexity
of this important VLSI design problem [1], [2]. Alpert et al.
[3] point out that at 32 nm there will be 4–6 metal widths
and 20 thicknesses across 12 metal layers. Furthermore, IBM
envisions an explosion in design rules beyond 22 nm that
will make GRP a multiobjective problem [4]. Unfortunately,
current CPU-based routers will prove to be inefficient for the
increasingly complex GRPs, as these routers only solve simple
optimization problems [5], [6].

Tackling this huge computationally complex problem would
require a platform that offers high-throughput computing such
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as a graphics processor unit (GPU). Traditionally, a GPUs
computing bandwidth is used to solve massively parallel
problems. GPUs excel in applications that repeatedly apply a
set of operations on a big dataset, involving single-instruction
multiple-data (SIMD) style parallel codes. Several existing
VLSI computer-aided design problems have seen successful
incarnation in GPUs, delivering more than 100× speedup
[7]–[9]. However, the canonical GRP does not fit well
into such an execution paradigm because routing algorithms
repeatedly manipulate shared data structures such as rout-
ing resources. This sharing of resources disrupts the data-
independence requirement of traditional GPU applications.
Hence, existing task-based parallel routing algorithms must
be completely revamped to make use of the GPU bandwidth.

In the light of these technology trends, we propose a
hybrid GPU–CPU routing platform that enables a collaborative
algorithmic framework to combine data-level parallelism from
GPUs with thread-level parallelism from multicores. This
paper specifically addresses the scalability challenges posed
to current global routers. To date, there have been very few
works that parallelize the GRP by using multicore processors
[10], [11]. However, none of these is designed to exploit high-
throughput computing platforms such as the GPU.

Exploiting the computation bandwidth of GPUs for the
GRP is a nontrivial problem, as the overhead of sharing
resources hurts the overall performance. In this paper, we
use a fundamentally new mode of parallelism to uncover the
performance potential of the GPU. We propose a novel net-
level concurrency (NLC) model to efficiently consider the
data dependencies among all simultaneously routed nets. This
model enables parallelism to scale well with technology and
computing complexity.

Following are the major contributions of this paper to global
routing research.

1) GPU-CPU hybrid routing: We propose an execution
model that allows cooperation of the GPU and the
CPU to route multiple nets simultaneously through NLC.
To the best of our knowledge, this is the first work
on utilizing GPUs for global routing. The GPU global
router uses a breadth first search (BFS) heuristic while
the CPU router uses A* maze routing. Together, they
provide two distinct classes in the routing spectrum. The
high-latency low-bandwidth problems are tackled by the
CPU, whereas the low-latency high-bandwidth problems
are solved by the GPU. We believe this classification is
the key to efficiently tackle the complexity increase of
the GRP on massively parallel hardware.

1063–8210/$31.00 © 2013 IEEE
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2) Scheduler: We develop a scheduler algorithm to explore
NLC in the GRP. The scheduler produces concurrent
routing tasks for the parallel global routers based on
net dependencies. The produced concurrent tasks are
distributed to the parallel environments provided by the
GPU and multicore CPU platforms. The scheduler is
designed to dynamically and iteratively analyze the net
dependencies, hence limiting its computational over-
head.

3) GPU Lee algorithm: We propose a Lee algorithm
based on BFS path finding on a GPU. This algo-
rithm utilizes the massively parallel architecture for
routing and backtracing. Our approach is able to find
the shortest weighted path and achieves high compu-
tational throughput by simultaneously routing multiple
nets.

The remainder of this paper is organized as follows. In
Section II, we briefly discuss related literature. Section III
introduces our design spectrum for a GPU–CPU hybrid global
router. Section IV describes the overview of our GPU–CPU
router. We discuss the challenges of a scalable parallel routing
algorithm in Section V. Section VI presents our detailed sched-
uler design, while our GPU–CPU router implementations are
described in Section VII. We show our results in Section VIII,
and conclude in Section IX.

II. RELATED WORK

In 2007 and 2008, the International Symposium on Physical
Design (ISPD) held two global router competitions. These
contests promoted the development of many recent global
routers. These routers typically employ a collection of well-
studied routing techniques. Roughly, we can categorize them
into two types, sequential and concurrent. The sequential
techniques apply maze routing followed by a negotiation-
based rip-up and reroute (RRR) scheme. RRR was originally
introduced in Pathfinder for field-programmable gate arrays to
route macro cells [12]. Consequently, it has been used to recur-
sively reduce overflows in the following routers: 1) FGR [13];
2) NTHU-Route 2.0 [14]; 3) NCTUgr [15]; 4) NTUgr [16];
and 5) Archer [17]. The concurrent algorithms apply integer
linear programming (ILP) to achieve an overflow-free solution
[18]–[20].

GRIP [20] currently holds the best solution quality in open
literature of all ISPD 2007 and 2008 benchmarks. However,
its pure ILP-based approach requires a significantly longer
runtime compared to the negotiation-based RRR scheme. Even
the runtime reported in their parallel PGRIP [11] router was
still relatively high.

When problems approach a larger scale, sequential global
routers are more popular because the negotiation-based RRR
scheme offers a much better tradeoff between solution quality
and runtime. This scheme can even be applied in addition to
an ILP-based approach to reduce runtime [18]. However, the
downside of the sequential approach is the heavy dependency
of solution quality on the routing order of nets.

For this reason, parallelization of negotiation-based RRR
scheme is difficult. Routing multiple nets simultane-
ously could jeopardize the routing order and create race

Fig. 1. Wire-length distribution indicating the coexistence of a large number
of long and short wires. Wire length is measured in Manhattan distance
between two pins.

conditions on shared routing resources among threads.
Recently, Liu et al. [10] adopted a collision-aware global rout-
ing algorithm with bounded-length maze routing on a quad-
core system. They implemented a rudimentary workload-based
parallelization technique with a simple collision-awareness
algorithm. Their router has achieved good speedups on four
threads.

This paper is the first to use a high-throughput hybrid
environment (GPU–CPU) to tackle the GRP. As technology
develops, the boundary between SIMD and single-instruction
single-data will shrink [21]. This paper lays the foundation for
using a hybrid high-throughput environment for global routing.

III. TACKLING GRP WITH GPU–CPU HYBRID SYSTEM

In this section, we introduce the design motivation and the
spectrum of our GPU–CPU hybrid system for global routing.

A. Wire-Length Distribution of GRP

Technology scaling continues to pack more transistors in a
chip, and circuits become increasingly complex. The routing
benchmarks provided in ISPD 2007 and ISPD 2008 show that
modern GRPs typically come in considerably large scales.
Each problem generally packs a number of subproblems in
the magnitude between 106 and 107, while the difficulty of
each subproblem, defined as the length of the two-pin net,
varies in a wide range.

We illustrate the distribution of subproblem difficulties in
Fig. 1. The diagram represents the histogram of the diffi-
culties of all subproblems from six benchmarks in the ISPD
2007 suite. The subproblems are defined as the two-pin nets
acquired by decomposing the multipin nets. The difficulty of
each subproblem is characterized with the Manhattan distance
between the two pins. The peaks on the left side of the
diagram show that significant amounts of the subproblems are
easy to solve. Considerable numbers of difficult subproblems
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Fig. 2. Conceptual picture of computational bandwidth and latency of
existing computing platforms.

still exist, forming a long-tail distribution on the right side
of the diagram. Given such properties of the GRP, we aim
to maximize the computational throughput with the available
hardware.

B. GPU–CPU Hybrid

A conceptual design spectrum is demonstrated in Fig. 2,
where we compare the latency and bandwidth of the existing
computing platforms. The single-core system can solve each
routing problem with low latency, but falls short when the
problems come in extremely large numbers. In comparison, the
multicore system provides a larger computational bandwidth
with similar latency, making it the most common choice in
parallel global routing [10], [11]. However, the GPU platform
can easily prevail in a bandwidth contest by routing a large
number of nets simultaneously. The latency for a GPU solution
is likely to be longer due to the additional traffic between the
GPU and the CPU.

Given the long-tail distribution of the GRP, a GPU–CPU
hybrid solution appears to be attractive. The short nets, which
are also the majority of the entire workload, are a good
fit for the GPU platform to utilize the broad computational
bandwidth. The long nets are simultaneously assigned to the
multicore platform to exploit parallelism with lower latency.
We target to design such a heterogeneous parallel model
to approach the GRP with a wide-bandwidth low-latency
computing platform.

In this paper, we implement the proposed GPU–CPU hybrid
model for parallel global routing. Our experimental results
show the heterogeneous parallel model can yield significant
speedup across different benchmarks compared to the single-
core implementation while delivering similar routing quality.

IV. OVERVIEW OF GPU–CPU GLOBAL ROUTING

In this section, we give an overview of our GPU-CPU global
router.

A. Problem Definition

The GRP is defined as follows. There is a grid graph G that
is composed of a set of vertices V and edges E . Each vertex
vi in V corresponds to a rectangular cell, while each edge ei j

in E represents a connection between two adjacent vertices i
and j (or a boundary between two cells). There is also a set
of nets N , for which every ni in N is made up of a set of
pins P . Each pin in a net coincides with a vertex in V . The
capacity ci j of an edge between vertices i and j represents the
number of nets that can pass through that edge. The demand
di j represents the current number of nets passing through the
edge. Overflow of an edge is then defined as the difference
di j−ci j . A net ni is routed when we find a path connecting all
the pins of the net utilizing edges of graph G. The wire length
of a net is determined by the number of edges it crossed to
route all its pins. A solution to the GRP is achieved when all
the nets ni in N are routed.

B. Objective

Like other global routers [10], [11], [13]–[18], [22], [23],
the GPU–CPU global router has three major objectives. First
is the minimization of the sum of overflows among all edges.
Second is the minimization of the total wire length of routing
all the nets, and third is the minimization of the total runtime
needed to obtain a solution.

Typically in recent works, the three objectives are used
to evaluate the effectiveness of a global router. The pri-
mary goal for global routing is to resolve congestion and
achieve an overflow-free solution while producing timing-
friendly routes. However, the timing enclosures on critical
nets are often addressed as a soft constraint. The reason is
twofold. First, introducing additional timing constraints to an
already complex routing problem can overstress the global
router, which may choke the routing process [3]. Second, other
timing optimization processes can address the timing closure
issues from routed solutions. For example, buffer insertion,
placement, and via incremental synthesis can be used to avoid
the timing closure problems identified by the router [24].

C. Design Flow

The flow of our global router is shown in Fig. 3. The initial
global routing solution is generated as the following: we first
project a multilayer design on a 2-D plane and use FLUTE
3.0 [25] to decompose all multipin nets into sets of two-pin
subnets. Consequently, we apply edge shifting [26] on all the
nets to modify their initial topologies. We then perform initial
routing and create the congestion map.

The initial routing is a quick phase that initializes the
connectivity of nets. We use two main strategies to minimize
the overhead of this stage. First, the routing instances are
spread out on all CPU cores for parallel routing. In this
concurrency model, we ignore the resource sharing among nets
and try to minimize the synchronization overhead. Second, we
use a uniform cost function to compute each edge cost. Specif-
ically, the edge cost falls under two broad categories, i.e.,
nonoverflow and overflow, each represented with a constant
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(a)

(b)

(c)

Fig. 3. Global router design flow. (a) Initialization, while (b) post-routing
phase. Steps in (a) and (b) are also present in other CPU-based routers.
(c) RRR, and we enhanced this section by using a scheduler. Our contributions
are highlighted in dark background shading.

cost. As a result, with an A* search algorithm and bounding
box constraints, the initial solutions are found very quickly.
Typically, the initial routing phase takes less than 10 s to finish
on a quad-core processor, while the main RRR phase takes
several minutes.

Subsequently, the router enters the RRR phase. Now we
apply the negotiation-based scheme to iteratively improve the
routing quality by RRR the subnets that pass through the
overflowing edges. We route each subnet within a bounding
box, whose size is relaxed if the subnet is unable to find a
feasible path (Section VII-D). The order of the subnets to
be RRR is determined through congested region identification
(CRI), which is an algorithm that collects subnets that are
bounded within the congestion region (Section VII-E).

The main phase completes when no overflow is detected.
Then we apply layer assignment to project the 2-D routing
plane back onto the original multilayer design. The layer
assignment technique is similar to that described in [13].

D. Global Routing Parallelization

The parallel global router strives for high throughput by
maximizing the number of simultaneously routing nets. How-
ever, the negotiation-based RRR scheme is strongly dependent
on the routing order. Routing nets simultaneously regardless
of their order might cause degradation in solution quality and
performance.

We tackle this problem by examining the dependencies
among nets, and extracting concurrent nets from the ordered
task queue. These nets can then be routed simultaneously
without jeopardizing the solution quality. We now discuss
challenges of extracting concurrent nets (Section V) and
tackling them through a novel scheduler (Section VI).

(a) (b) (c) (d)

Fig. 4. Parallel router must have consistent view of resources. (a) Before
RRR. (b) and (c) Viewpoint of each thread. They unknowingly allocate
conflicted resources. (d) Overflow is realized at the end of R&R when both
threads back track.

V. ENABLING NET-LEVEL PARALLELISM IN

GLOBAL ROUTING

In this section, we will explain the requirements of enabling
data-level parallelism in the GRP, which is a necessary step
for exploiting high-throughput platforms such as GPUs.

A. Challenge in Parallelization of Global Routing

There are two main approaches in parallelizing the GRP.
First, the routing map can be partitioned into smaller regions
and solved in a bottom-up approach using parallel threads
[11], [27], [28]. Second, individual nets can be divided across
many threads and routed simultaneously. We call this the
NLC. NLC can substantially achieve better load-balancing and
uncover more parallelism. However, it also comes at the cost
of additional complexity.

Unlike partitioning, NLC allows sharing of routing
resources between multiple threads. Consequently, to effec-
tively exploit NLC, one must ensure that threads have current
usage information of the shared resources. Without such infor-
mation, concurrent threads may not be aware of impending
resource collisions, leading to unintentional overflow and
degradation in both performance and solution quality [10].
This phenomenon is demonstrated in Fig. 4, where both the
threads consume the lone routing resource resulting in an
overflow.

B. Achieving NLC

Unfortunately, collision awareness alone cannot guarantee
reaping performance benefits by employing NLC on high-
throughput platforms. This is best explained through Fig. 5.
In this example, we assume that there is a task queue and
that threads continually get a net to route from this queue.
We also assume that nets in the queue are ordered on the
basis of the congestion of their path. Finally, there are two
layers (horizontal and vertical) available for routing with
demands indicated as demandH and demandV . When multiple
threads are processing a congested region, as in Fig. 5(b),
concurrent routing will cramp limited resources to specific
threads, sacrificing performance and solution quality. This
problem is exacerbated with increasing number of threads and
circuit complexity. However, we observe that we can recover
substantial performance by allowing threads to concurrently
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(a) (b) (c)

Fig. 5. Collision awareness alone can hurt routing solution. (a) Four-
thread router processing a particular congested region, one net per thread.
(b) Routing solution generated via collision-aware algorithm. Some resources
are wasted as a result of overhead of collision awareness because threads
are discouraged to route on cells (black, green, yellow, and blue cells) that
were previously used by another thread. (c) With proper scheduling, only
one thread is processing this particular region and some of the resources are
recycled. The remaining threads are routing other congested areas in the chip
(not shown).

route in different congested regions. In other words, a single
thread can process the region shown in Fig. 5(c).

Therefore, the key to achieving high throughput in NLC
is to identify congested regions and co-schedule nets that
have minimal resource collisions. In the next section, we will
discuss our proposed scheduler design.

VI. SCHEDULER

In this section, we describe our scheduler that dynamically
examines the dependencies among nets in an ordered task
queue, and extracts concurrent nets to be dispatched to the
GPU and CPU routers for parallel routing.

A. Scheduler Overview

Fig. 6 shows our preliminary design overview of a global
router on a hybrid platform [29]. This design aims to exploit
NLC within the traditional RRR global routing algorithms.

The heart of this approach lies in the scheduler design,
which identifies the concurrent nets to be routed in parallel.
Since nets can share routing resources (e.g., tiles on the routing
grid), concurrent nets are chosen in a manner that reduces
resource conflicts where multiple routing threads attempt to
use a given routing resource. Consequently, this approach
restricts the level of parallelism that can be exploited during
the global routing.

The scheduler dynamically populates two task queues with
sets of nets that can be routed simultaneously. These task
queues separately serve CPU and GPU threads. The task
queues are decoupled from each other, to ease the load
balancing and synchronization between the CPU and the GPU.
Nets for GPU threads are chosen in a manner such that the
entire routing for those nets can be efficiently done in the
available shared memory in the GPU architecture. On an
nVIDIA Fermi architecture, which limits the shared memory
to 48 kB, nearly 99% of the nets from the ISPD benchmark
suites can be routed on the GPU. As explained in Section VII-
B, longer nets are assigned to the CPU, as routing these nets
can uncover several other candidate nets for parallel routing.

Fig. 6. Overview of GPU–CPU router. Concurrent subnets (snet) are
distributed to GPU and CPU task pools.

B. Nets Data Dependency

In this section, we explain the concept of nets data depen-
dencies, and discuss our parallel model that examines this
dependency to exploit parallelism.

In each RRR iteration, we first create an explicit routing
order for all the nets located within the congested regions. This
order is derived by comparing the areas and aspect ratios of the
nets. We assign higher priorities to nets that cover larger areas
with smaller aspect ratios, and route them first. Typically, it
is easier to find overflow free routes for these nets. Therefore,
assigning routing resources to these nets before smaller nets
can minimize the overall congestion and the wire length
[13], [14].

By enforcing this explicit routing order, the routing process
essentially creates data dependencies among the nets. Specifi-
cally, the routing order dictates different priorities for all nets
when reassigning their routing resources. For example, when
two nets both need the same resources to find paths, the one
routed first has a higher priority to obtain those resources.
If the order is changed, a degraded solution is likely to
occur. For this reason, a conventional RRR process is typically
implemented sequentially to ensure the net data dependencies.

In our parallel model, we try to exploit parallelism by rout-
ing nets that do not have a dependency violation among each
other. Since net data dependencies only confine nets that have
shared routing resources, the key that allows us to parallelize
the routing process while maintaining the data dependencies is
to examine the shared routing resources among the nets. If no
shared resource exists, then we can safely exploit parallelism
by routing these independent nets simultaneously.

Honoring the net data dependencies is crucial for our paral-
lel model. The existing task-based parallel global router does
not examine the net dependency when exploiting concurrency
[10]. As a result, more than 41% of the subnets are affected
by collisions in shared routing resources. This model does not
suit well in a GPU-based concurrency framework. Because of
the lack of synchronization mechanism for thread blocks in
the GPU hardware, we need to avoid resource collisions on
the GPUs device memory.

In this paper, we propose a scheduler to generate indepen-
dent routing tasks for the parallel global routers. The data
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Fig. 7. Routing problem with nets overlapping each other.

dependency is iteratively analyzed, thereby limiting its analysis
overhead while providing precise dependency information.
First, the data dependency among nets is constructed in a
dependency graph. Then we exploit parallelism by routing the
independent nets. The parallelism created by our model can
exploit massively parallel hardware without causing resource
collisions or jeopardizing the routing order. As a result,
our GPU–CPU parallel global router achieves deterministic
routing solutions.

C. Net Dependency Construction

In this subsection, we present the scheduler algorithm to
construct the net dependencies. As an example, a selection of
two-pin nets (subnets) is illustrated in Fig. 7. In this example,
we assume that each net’s bounding region is of the same size
as their covering area, and that the routing order derived is

D > C > F > B > E > G > A.

We now explain how to construct the dependency graph, and
exploit the available concurrency without causing conflict in
routing resource or order. This approach is mainly divided into
the following three steps.

1) Tile Coloring: In this step, each tile identifies its occu-
pancy by iterating through the ordered subnets. The first subnet
region that covers the tile is considered as its occupant. Using
the example from Fig. 7, the results of the colored tiles are
shown in Fig. 8(a). We can observe that most of the map is
colored by subnet D because it has the highest priority in
routing order. Given this color map, each subnet can visualize
the other subnets that it is overlapping with, hence determining
its dominant subnets.

2) Finding Available Concurrency: With the help of the
color map, we can easily find subnets that can be routed
by checking if it occupies all of its routing regions. If not,
then there is a dependency on other subnets and it must wait
until the dependency is resolved. In Fig. 8(a), subnets A and
D occupy all of their routing regions. Hence, they can be
scheduled together.

Now we introduce the concept of dependency level. This
metric is used to determine the urgency of routing certain
subnets. We score the dependency level as the number of
routing regions that one subnet invades. For instance, in
Fig. 8(a) subnet D scores 5 because it invades the area of
five subnets: i.e., B , C , E , F , and G.

(a) (b)

Fig. 8. Results after the first iteration. (a) Coloring of tiles: bigger nets
dominate ownership over smaller ones. Only A and D can be routed together
because other nets are dependent on D. (b) Net dependencies are derived
from the color map.

(a) (b)

Fig. 9. Results after the second iteration. (a) After D and A are routed, nets
C , B , F , and G can be routed together because they have no dependencies.
(b) More detailed dependencies are revealed in the graph.

From Fig. 8(b) we can make an interesting observation on
the dependencies among all subnets. Subnets B , C , E , F ,
and G are dependent on subnet D but we cannot identify
the dependencies between them. The algorithm intentionally
leaves these detailed dependencies for future computation,
so as to reduce complexity while extracting the available
concurrency in a timely manner.

3) Tile Recoloring: In this step, the algorithm uncovers
detailed dependencies by reconstructing the color map. After
the scheduled subnets are routed, the color map must be recon-
structed to resolve previous dependencies. Fig. 9(a) shows the
new color map when subnets A and D are already routed.
Recoloring only needs to consider subnets that were dominated
by A and D. In this case, they are {C, F, B, E, G} for D’s
region, and ∅ for A.

The dependency graph is updated using the new map.
Fig. 9(b) shows the new graph that reveals a new dependency
between subnets B , E , C , and F . Similar to the previous
iteration, the dependency graph indicates subnets B , C , F ,
and G can be scheduled once subnet D has finished, while E
can only be scheduled after B , C , and F are completed.

D. Implementation and Optimization

The above three steps are recursively applied until all
dependencies are resolved. The scheduler thread and the
global router threads execute in parallel with a producer–
consumer relationship. The scheduler keeps constructing the
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dependency graph with the given task queue and producing
concurrent nets to the router threads. The routers consume
these nets simultaneously with different priorities indicated
by the dependency levels, and return the completed nets to
release more concurrent nets.

The efficiency of the scheduler algorithm affects the avail-
able computational throughput for routing. The complexity
of this algorithm increases as the region size and net count
increases. In practice, we reduce the problem size using
the identified congestion region (Section VII-D). Instead of
exploring concurrency on the entire routing map, the search
area is restricted to only the congestion regions, hence easing
the computation load of tile coloring.

In addition, a task window is used to restrict the number of
nets being examined for concurrency in each iteration. In some
cases, congestion regions contain a large number of nets. The
task window can effectively limit the search space and speed
up the dependency tree construction (Section VII-C).

VII. IMPLEMENTATION

In this section, we will discuss details of our GPU–CPU
router implementation. We focus on several key issues such as
the maze routing implementation on the GPU (Section VII-A),
efficient GPU implementation of the scheduler
(Section VII-C), directional CRI algorithm (Section VII-D),
our bounding box expansion method (Section VII-E),
and distribution of nets among CPU and GPU threads
(Section VII-F).

A. Maze Routing Implementation on GPU

1) Parallel Lee Algorithm on GPU: Our GPU router uses
the parallel Lee algorithm [30] to find the weighted shortest
paths. This widely applied approach, although known for its
high memory usage and slow search speed, is an attractive
candidate for implementation on parallel systems.

Typically, the front wave expansion scheme of the Lee
algorithm can be parallelized, allowing us to simultaneously
explore the vertices at the same depth, which are defined as
frontiers. This concurrency model enables us to utilize the
GPUs large number of threads in a single block to exploit fine-
grain parallelism during the concurrent frontiers expansion.
This concurrency model is shown in Fig. 10.

In addition, we can safely perform multiple wavefront
expansions and backtraces in parallel without causing colli-
sions. This level of parallelism is coarse grain, and hence is
exploited by the GPUs grid blocks. We should note that no
global synchronization mechanism is required among the GPU
thread blocks when routing multiple nets in parallel, since the
nets are mutually independent. We illustrate this concurrency
model with Fig. 11.

Another factor that makes the Lee algorithm appealing to
GPU architecture is the use of simple grid arrays to represent
the routing map. No complex data structure is required to store
the pending route candidates. In our implementation, we use a
fixed-sized flat memory to store the costs of expanding paths.

Fig. 10. Pathfinding in a GPU. We propagate from the source node. The BFS
fills up the entire search region, and continues until all frontiers are exhausted.
Then we backtrace from the target node to find the shortest weighted path.

Fig. 11. GPU routing overview. Each thread block finds route for a single
set of source and sink. The routing is done locally on the shared memory of
each thread block.

2) Algorithm Description: We now explain our GPU-based
parallel Lee algorithm in detail. Like the sequential version,
our GPU-based Lee algorithm is divided into two phases.

1) Wave propagation: In this phase, propagation starts
from the source tile. The search stops when the fron-
tiers are all exhausted, thereby guaranteeing that all
possible paths within the search region are traversed.
Details of our wave propagation approach is described in
Algorithm 1, with the explanation of terms in Table I.
The algorithm describes the routing kernel executed
on each GPU thread. We map each GPU thread to
a tile on the routing grid. Each tile is indexed using
the corresponding GPU thread ID (tid). If the tile is
identified as a frontier tile, then the GPU thread will try
to propagate to the neighboring tiles, which are indexed
as nid in the algorithm.

2) Backtracing: In this phase, the GPU kernel essentially
reverses the propagation direction. Starting from the
Sink tile, we trace the route with the least cost and mark
the traversed edges as the resulting path until the Source
tile is reached. In the end, only one successful routing
path is returned by the kernel.
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Algorithm 1 GPU Lee Algorithm Kernel
1: tid ← getThreadID
2: if Frontier[tid] then
3: Frontier[tid]← false
4: for all neighbors nid of tid do
5: Edge ← Vertex(tid, nid)
6: if Edge exists then
7: AddedCost← TileCost[tid] + EdgeCost[Edge]
8: if AddedCost < TempTileCost[nid] then
9: TempTileCost[nid] ← AddedCost

10: end if
11: end if
12: end for
13: end if
14: SYNCHRONIZE_THREADS()
15: if TileCost[tid] > tempTileCost[tid] then
16: TileCost[tid] ← tempTileCost[tid]
17: Frontier[tid]← true
18: DONE ← false
19: end if
20: tempTileCost[tid] ← TileCost[tid]

TABLE I

GPU LEE ALGORITHM NOTATIONS

Term Description

Frontier Boolean list that marks the frontier tiles in the
current iteration. Contains source vertex initially.

EdgeCost Array that stores cost of all edges.

Vertex Function that returns the Edge between two
Vertices.

AddedCost Intermediate variable to store the new tile cost.

TempTileCost Array that stores cost of traversing tiles. Initialized
as infinite (Inf.).

TileCost Array that stores minimum cost of traversed tiles.
Initialized as Inf.

DONE Boolean indicating all frontiers are explored.

We integrate the propagation and backtracing phases into
one CUDA kernel function instead of two separate ones. Doing
so reduces the overhead of loading intermediate data between
the shared memory and device memory, and the overhead of
additional kernel launch.

Our algorithm is fundamentally different from the pre-
viously proposed BFS algorithms for GPUs [31], [32] for
the following reasons: 1) our algorithm tackles the weighted
shortest path problem, and 2) we route an individual two-pin
net within each thread block. Therefore, we attain performance
boost by routing a large amount of nets concurrently.

B. GPU Memory Arrangement

The performance of a GPU application is largely dependent
on its memory arrangement. In this section we explain our
GPU memory arrangement to enable high-throughput maze
routing on the GPU.

In our GPU Lee algorithm, the costs of traversing tiles are
arranged in grid arrays, which are stored in the shared memory.
This arrangement is demonstrated in Fig. 11. The size of

the grid is determined by the bounding box of the routing
net, hence it is partial to the complete routing grid. We
let individual blocks update the local grid on the shared
memory, without synchronization to the global device memory.
This arrangement has a much higher efficiency, but comes at
the cost of generality. Because of the shared memory size
limitation, the number of tiles that can be traversed by each
thread block is constrained to about 2500. Fortunately, this
size is reasonable for the GRP in most cases. According to
our observation, more than 99% of all two-pin nets can be
fitted within this area.

We store the vertices topology and edge cost data in the
GPU texture memory. The texture memory is allocated on
the device memory. But with texture binding, this memory
is cached and optimized for read-only data. Fetching from
texture memory provides high bandwidth on memory space
with good spatial locality (i.e., if a cell is visited, then its
neighbors are also traversed). Hence, we bind the vertices and
edge costs array with 3-D-texture and 1-D-texture memories,
respectively. Each cell in the vertices in 3-D-texture points to
six different adjacent cells: –X, –Y, –Z, +X, +Y, +Z. We use
these directions to identify the edge index, which locates the
cost of the edge from the edge cost texture.

C. Scheduler

The efficiency of the scheduler is critical to the overall
throughput of our GPU–CPU hybrid global router. On the
one hand, the scheduler needs to be able to produce enough
concurrent nets for all parallel threads to consume. On the
other hand, the scheduler needs to be light enough (weight) to
deliver the workload in a timely manner. In this section, we
introduce an efficient scheduler design.

1) Scheduler on GPU: We implement the scheduler algo-
rithm on a GPU. The algorithm is parallelizable on a fine-
grain level, with each GPU thread dedicated to color a single
tile. This implementation also has a low latency due to the
small amount of data packages that are copied between the
CPU and the GPU. In addition, transferring the computation
to the GPU allows us to free significant CPU resources, which
can be dedicated to maze routing. We show these results in
Section VIII-C.

2) Algorithm Optimization: The complexity of the sched-
uler algorithm increases as the region size and net count
increases. In practice, we reduce the problem size using
the identified congestion region (Section VII-D). Instead of
exploring concurrency on the entire routing map, the search
area is restricted to only the congestion regions, hence easing
the computation load of tile coloring.

In addition, a task window is used to restrict the number
of nets being examined for concurrency in each iteration.
The task window has a significant impact on the overall
performance of our parallel router. A short window usu-
ally leads to less trade-off in performance, but might yield
insufficient workloads, whereas a long window might over
examine the available concurrency, and introduce degradation
in performance.

Fig. 12 shows the distribution of workload versus the
parallel window size on the ISPD 2007 newblue2 benchmark.
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Fig. 12. Workload distribution with different task window. With the
increasing size of parallel window, workload is easier to be balanced amongst
CPUs and GPU, but it also comes at higher overhead.

On the left side of the figure, insufficient workloads due to a
small window size causes most nets being distributed onto a
single thread. For this reason, the GPU thread has a very low
utilization rate. This problem is alleviated by increasing the
size of the task window. However, we should note that, when
the window size is too wide, the overhead of the scheduler
itself begins to dominate, hence degrading the overall router
performance.

D. Congested Region Identification

To discuss our CRI algorithm, we first formalize the
problem of finding congested regions by explaining several
terminologies. The first step in the identification of congested
regions is the generation of a congestion map from the initial
routing result. A congestion map is an X × Y matrix of
congestion values. Each element in the map bi j is the average
congestion of the top and right edges of cell (i, j). Congestion
mi, j ;k,l is the congestion of edge between cell (i, j) and (k, l).
If we let di, j ;k,l and ci, j ;k,l be the corresponding demands and
capacities of that edge then we can specify mi, j ;k,l as

mi, j ;k,l = di, j ;k,l

ci, j ;k,l
.

Consequently

bi j = mi, j ;i+1, j + mi, j ;i, j+1

2
.

All bi j s are scaled with respect to the maximum such that
0 ≤ b

′
i j ≤ 1, where b

′
i j is the scaled value. Table II lists the

remaining notations and their descriptions.
In order to accurately identify the congested region, we use

a directional expansion algorithm to adaptively expand to the
region in the directions that result in the highest congestion.
Fig. 13 best explains this situation. We begin by taking the
most congested tiles (red cells in the figure) and adaptively
expand until the average congestion for the region is below a
certain threshold. We divide the congestion value into several

TABLE II

ALGORITHM NOTATIONS

Term Description

r Rectangle with bottom left coordinates (i, j) and
top right (k, l)

Avei (r) Average congestion value inside the expanded
rectangle r in the direction of i side(s)

LB(level) Returns the lower bound value for a particular
congestion level

expand4sides(r) Expands region r in all directions

expand3sides(r) Expands three sides of region r toward the
maximum congestion

expand2sides(r) Expands two sides of region r toward the
maximum congestion

expand1sides(r) Expands one side of region r toward the maximum
congestion

Fig. 13. Directional expansion algorithm adaptively expanding in the
directions with the highest congestion.

congestion levels, much like NTHU-Route [14]. The number
of congestion levels we seek to model will dictate the size of
each region. In our example, we have four congestion levels.
After these regions are found, we route the nets inside them
in parallel based on Section V. Pertinent details are presented
in Algorithm 2, and Table II lists the notations and their
descriptions.

E. Bounding Box Expansion

Bounding box is widely applied in global routers. This
technique constrains the searching region of two-pin nets
within a rectangle, reducing the space complexity of maze
routing and decreasing the solution wire length.

In our GPU–CPU router, bounding box is a crucial com-
ponent for the scheduler to determine nets dependencies.
However, in order to allow nets to explore a larger solution
space, the size of the bounding box is expanded as the RRR
iteration proceeds. As the remaining overflow decreases, we
can relax the constraint of the bounding box and allow the
maze router to obtain overflow free route at the cost of longer
wire length. But as the constraint of bounding box relaxes
to more than 10 times as large as the original, we stop the
expansion again to avoid excessively long routes.

We choose an adaptive method, rather than a fixed para-
meter function, to expand the bounding box. The search area
constraint is relaxed according to the percentage of remaining
overflow. We keep the size of the bounding box unchanged
until 99% of all overflow is resolved. This phase passes very
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Algorithm 2 Directional Expansion Algorithm
r = max(bi j )
∀ 0 ≤ i ≤ X ; 0 ≤ j ≤ Y
1: for level= 1 to 4 do
2: while Ave4(r) > LB(level) do
3: expand4sides(r)
4: end while
5: while Ave3(r) > LB(level) do
6: expand3sides(r)
7: end while
8: while Ave2(r) > LB(level) do
9: expand2sides(r)

10: end while
11: while Ave1(r) > LB(level) do
12: expand1sides(r)
13: end while
14: end for

fast because the searching areas are small. Then we linearly
increase the size of the bounding box as the RRR iteration
proceeds, until its size reaches the upper limit.

F. Workload Distribution Between the GPU and CPU

In this section, we introduce the heuristic used for workload
balancing. The scheduler dispatches workloads among the
CPUs and the GPU for optimum computational throughput.
Typically, the CPU routers achieve a single solution with lower
latency than the GPU router, but the latter can achieve much
higher throughput by routing multiple nets in a single kernel
call. Urgent nets, which release several subsequent nets to
be routed concurrently, are more likely to be scheduled on
the CPUs. In addition, nets with large bounding boxes are
also routed in the CPU due to the shared memory limits on
the GPU. The detailed scheduling heuristic is based on the
following criteria.

1) Routing region size: The GPU router has constraints
on the size of the routing region for each two-pin net.
If a workload exceeds the area limitation, it will be
scheduled on a CPU.

2) Net size preference: We sort the concurrent nets with
respect to their problem size. The CPU maze router
consumes workload from the larger end of the queue,
while the GPU consumes from the smaller end.

3) Lower-bounded scheduling on the GPU: Since the GPU
router strives for a high bandwidth, it only schedules
nets to route if the number of available workloads meet
a certain lower boundary. Typically, we set this number
to be one-fourth of the current parallel window size.

These criteria can dynamically consume the available work-
loads as quickly as possible. The heterogeneous structure of
a GPU–CPU hybrid system makes it difficult to predict a
perfectly balanced schedule. Hence we allow certain router
threads to wait in idle. This is especially the case when the
number of concurrent nets is small.

Fig. 14. Runtime comparison between CPU A*Search and GPU BFS.

Fig. 15. Speedup of GPU BFS over CPU A*Search.

VIII. RESULTS

We implement our GPU–CPU hybrid router in C++ on
an Intel Quad-core 2.4-GHz machine with 8 GB of RAM.
The GPU we use is an Nvidia Geforce GTX 470 with the
Fermi architecture. The C++ code is compiled with the Intel
C++ Compiler 11.1; CUDA code is compiled with the CUDA
Toolkit 4.0. The multithreading framework is designed using
pthread. We use ISPD 2007 2-D benchmarks and ISPD 2008
3-D benchmarks for evaluation in the experiments shown
below. In these benchmarks, each edge or via usage translates
to a unit wire length, except for ISPD 2007 benchmarks, in
which a via counts as three-unit wire length.

A. GPU and CPU Router

We first compare the routing throughput between our GPU
and CPU routers. In this experiment, we schedule the same
nets to the GPU router and a single CPU router, and record
the average wall clock time for both routers. To make it a
fair comparison, the process includes routing, backtracing, and
data transfers between the GPU and the system memory.

The results are shown in Figs. 14 and 15. The x-axis in both
figures represents the number of concurrent nets being sched-
uled on either CPU or GPU platform. The runtime comparison
in Fig. 14 shows a linear increase of CPU router runtime with
the growing number of routing nets. Interestingly, the GPU
runtime slope is much flatter than the CPU. Consequently, the
CPU router has a much shorter latency when routing individual
nets, while the GPU can deliver a much higher bandwidth
when scheduled with multiple nets.

The relative speedup of the GPU router over the CPU
router is illustrated in Fig. 15. We can observe about 5×
speedup when both the routers are scheduled with 30 nets,
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TABLE III

WIRELENGTH AND RUNTIME COMPARISON WITH NTHU-ROUTE 2.0

Parallel Router (Four-Core) Parallel Router (Four-Core + GPU) NTHU 2.0 Speedup

WLa Runtimeb WLa Runtimeb WLa Runtimeb Four-core Four-core + GPU

adaptec1 5.43E6 2.90 5.44E6 2.07 5.34E6 9.95 3.43 4.81

adaptec2 5.29E6 0.70 5.30E6 0.63 5.23E6 2.1 3.00 3.33

adaptec3 1.31E7 3.53 1.31E7 3.05 1.31E7 10.86 3.08 3.56

adaptec4 1.24E7 0.95 1.24E7 0.65 1.22E7 2.5 2.63 3.85

adaptec5 1.55E7 9.98 1.55E7 8.12 1.55E7 21.9 2.19 2.70

newblue1 4.70E6 2.87 4.70E6 1.88 4.65E6 6.2 2.16 3.30

newblue2 7.79E6 0.66 7.81E6 0.65 7.57E6 1.1 1.67 1.69

newblue5 2.38E7 5.38 2.38E7 4.42 2.32E7 19.1 3.55 4.32

newblue6 1.80E7 4.12 1.80E7 3.78 1.77E7 17.5 4.25 4.63

bigblue1 5.63E6 3.10 5.63E6 2.86 5.59E6 13.1 4.22 4.58

bigblue2 9.10E6 2.31 9.05E6 2.09 9.06E6 8.4 3.64 4.02

bigblue3 1.30E7 1.09 1.30E7 1.01 1.31E7 4.4 4.04 4.37

Average 1.01c – 1.01c – 1 – 3.15 4.01

aWirelength in terms of edges consumed.
bExpressed in minutes.
cNormalized to the NTHU-Rs wirelength.

which is a typical number of available concurrent nets that we
can extract using the proposed scheduling approach. However,
the theoretical speedup of the GPU router grows with larger
number of concurrent nets. We have observed a speedup of
73× if both routers are scheduled with 1000 concurrent nets
(not shown).

B. Comparison With NTHU-Route 2.0

We compare the performance our global router under differ-
ent configurations, and use the solutions of ISPD 2008 routing
contest winner NTHU-Route 2.0 as a reference. NTHU-Route
2.0 is a state-of-the-art global router based on a single-threaded
RRR scheme. The router uses CRI to create net ordering for
the RRR process, during which a multisource and multisink
maze routing technique is use to create a competitive solution
quality. We gather the NTHU-Route 2.0 solutions with the
same hardware platform for the comparison.

In Table III, we show the comparison of our global router
with NTHU-Route 2.0. The runtime is measured in minutes.
Our parallel router generates high-quality routing solutions
with wire length within an average of 1.1% increase to that
reported by NTHU-Route 2.0. Noticeably, the additional GPU
router introduces negligible overhead in the resultant wire
length. In the runtime comparison, the parallel router utilizing
four CPU threads achieves an average speedup of 3.15×
compared to NTHU-Route 2.0, while 4× average speedup
is achieved with the additional GPU router. These results
prove the effectiveness of our concurrency model in solving
the GRP with NLP on a high-throughput hardware while the
concurrency has little affect in the solution quality.

We show the results of the hard-to-route problems in
Table IV. These problems are unable to find overflow-free
solutions. We use a fixed time budget, typically 1 h, for
these benchmarks to find a solution. In addition, if the route
finds out that the previous 10 iterations lead to no solution
improvement, it terminates the RRR process. These results

TABLE IV

WIRE LENGTH AND OVERFLOW COMPARISON WITH NTHU-ROUTE 2.0

ON HARD-TO-ROUTE PROBLEMS

Our GR NTHU-R2

MOa TOb WLc MO TO WL

newblue3 183 31484 108.5 204 31454 106.49

newblue4 4 168 138.9 4 138 130.46

newblue7 4 78 352.3 2 62 353.35

bigblue4 2 178 232.9 2 162 231.04

aMost overflow.
bTotal overflow.
cWirelength in terms of edges consumed.

show that for the unroutable benchmarks, our global router
generates competitive solutions in terms of overflow reduction.

C. GPU-Based Scheduler

In this section, we show the impact of our scheduling
algorithm on the overall performance and study the primary
performance bottleneck of the parallel router.

Comparing the results from Section VIII-B against
Section VIII-A, we notice that the speedup achieved in the
actual routing instances are less than the theoretical value. To
understand the cause of this performance gap, we use a much
more efficient GPU-based scheduler. The GPU-based approach
significantly reduces the runtime overhead of the scheduling
process, and potentially directs more computational efforts to
the routing threads. We use this experiment to study whether
a more efficient scheduling process can benefit the overall
performance.

The results are shown in Table V. We organize the results in
two columns for both the four-core and four-core with GPU
routing cases. The first column reports the routing runtime
with the GPU-based scheduling algorithm; the second one
reports its speedup comparing to the CPU-based scheduling
algorithm (results in Table III).
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TABLE V

PERFORMANCE SENSITIVITY TO THE FASTER GPU-BASED

SCHEDULING ALGORITHM

4-core 4-core+GPU

Runtimea Speedupb Runtimea Speedupb

adaptec1 2.51 1.16 2.09 0.99

adaptec2 0.63 1.11 0.62 1.02

adaptec3 3.19 1.11 2.98 1.02

adaptec4 0.94 1.01 0.93 1.02

adaptec5 8.33 1.20 7.84 1.04

newblue1 2.57 1.12 2.20 1.17

newblue2 0.64 1.03 0.64 1.02

newblue5 7.01 1.14 6.53 1.08

newblue6 4.81 1.19 4.73 1.14

bigblue1 3.38 1.16 3.28 1.12

bigblue2 2.78 1.10 2.73 1.04

bigblue3 2.33 1.02 2.32 0.99

aExpressed in minutes.
bSpeedup compared to runtime listed in Table III.

Unfortunately, the more efficient GPU-based scheduler
brings only marginal gain to the overall speedup. No concrete
performance boost is observed in either four-core or four-
core with GPU case. The speedup of adaptec1 and big-
blue3 are slightly decreased because of allocating additional
GPU resources to the scheduling process. These results show
that the lack of concurrent nets is the primary bottleneck
that limits the speedup we can achieve with the proposed
framework.

In conclusion, our router relies heavily on the amount of
independent nets to exploit parallelism. Regardless of the
scheduling approach, the available resources are often limited
in the actual routing instances. This limitation leads to an
insufficiency of nets to be scheduled in the routing thread
pool. The lack of nets forces the inactive threads to wait for
the active ones to finish routing due to the nets’ ordering and
resource dependencies.

D. Achieved Speedup

Finally, we examine the speedups achieved by our parallel
model in Table VI, where the runtime of the RRR stage
is compared under two configurations of our parallel router:
four-core and four-core with GPU. We use the GPU-based
scheduler for this set of comparisons. As a result, the parallel
router with four CPU threads achieves an average speedup of
3.27×, while an average speedup of 3.60× is gained with the
additional GPU.

From these results, we can see that the additional GPU
thread brings a noticeable speedup over the four-core case.
For example, an additional 129% performance improvement is
observed by using the GPU router in the adapetc1 benchmark.
These results indicate a strong potential for high computational
throughput with our proposed approach. Unfortunately, on
average, the GPU–CPU router only brings 10.1% additional
performance improvement, indicating that the speedup that we
achieve is also dependent on the properties of the benchmarks.
Specifically, as mentioned in Section VIII-C, since the lack

TABLE VI

RRR STATE SPEEDUP COMPARISON TO OUR GLOBAL

ROUTER IN SEQUENTIAL CONFIGURATION

1-core 4-core 4-core + GPU

tRRR tRRR Spdup tRRR Spdup

adaptec1 7.30 1.77 4.12X 1.35 5.41X

adaptec2 0.71 0.25 2.84X 0.24 2.96X

adaptec3 6.48 1.63 3.99X 1.42 4.56X

adaptec4 0.26 0.11 2.36X 0.10 2.60X

adaptec5 28.79 6.46 4.46X 5.97 4.82X

newblue1 7.23 2.22 3.26X 1.85 3.91X

newblue2 0.44 0.26 1.69X 0.26 1.69X

newblue5 14.78 4.41 3.36X 3.92 3.77X

newblue6 11.88 3.19 3.71X 3.13 3.80X

bigblue1 9.83 2.57 3.82X 2.47 3.98X

bigblue2 6.04 2.03 2.96X 1.98 3.05X

bigblue3 2.72 1.03 2.64X 1.03 2.64X

Average – – 3.27X – 3.60X

of independent nets is the primary bottleneck of our per-
formance gain, not all benchmarks have the same level of
freedom to schedule independent nets for parallel routing. As
a result, the speedups achieved by our CPU–GPU router on
the 12 benchmarks fall within a wide range, from 1.69× to
5.41×.

IX. CONCLUSION

As technology continues to scale, computational complexity
of many EDA algorithms is growing rapidly. Exploiting the
computational bandwidth of high-throughput platforms such as
the GPU is a prominent direction for future EDA. In this paper,
we presented a hybrid GPU–CPU high-throughput computing
environment as a scalable alternative to the traditional CPU-
based router. We showed that the traditional GRP needs to
be revamped for exploiting the new computing environment.
The key to our method is using the NLC guided by a
scheduler. The scheduler analyzes data dependencies between
nets and dynamically generates concurrent routing tasks for the
computing environment. Detailed simulation results showed an
average of 4× speedup over NTHU-Route 2.0 with negligible
loss in solution quality. Our framework is a concrete step
toward developing next-generation global routers geared for
high throughput compute architectures.
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