
Dual Core Capability of a 32-bit DLX
Microprocessor

DEAN MICHAEL B. ANCAJAS, ANASTACIA P. BALLESIL, JOHN RICHARD E. HIZON,

EUGENE A. OPELINIA, JOY ALINDA P. REYES, ALLAN GORDON L. SEPILLO,

WINSTON A. SUMALIA, WILSON M. TAN

Intel Microprocessors Laboratory,
Department of Electrical and Electronics Engineering

University of the Philippines, Diliman

Abstract— We report an implementation of a 32-bit DLX
Microprocessor capable of operating in a dual core environ-
ment. The processor was modified for it to be capable of
operating atomic instructions, a requirement in a dual core
environment. The dual core environment was simulated using
a similar core acting as a pseudo slave core. The resulting
processor can then be interfaced with another instance of the
same processor to function as a dual core processor. It can
also be interfaced with a DSP co-processor that is compatible
with the handshaking protocols of the processor.

The resulting implementation yielded a power reduction
of 17.9%(due to a more efficient register file) and an area
overhead of 23%(due to additional blocks needed for dual
core capability) compared to previous DLX implementations
of the laboratory.

Index Terms— dual core, multithreading, multicore, DLX
processor

I. INTRODUCTION

THE goal in processor design has always been higher

performance for smaller area and lesser power con-

sumption. Increasing the clock rate has been the tradi-

tional and popular approach used in achieving acceptable

compromises between the three. While attainable clock

rates may still increase in the near future by advances in

processor design and materials engineering, performance

gains from such advances alone will hardly be able to

keep up with Moore’s Law and the industry’s need for ever

increasing processing capability. Even today, Intel’s fastest

single core processor never exceeded the 4 GHz barrier.

One of the approaches being explored as a workaround

to this problem is multithreading, specifically, multicore

processor implementations. They offer higher performance

per watt ratio than traditional single core processors. Mul-

ticore processors are able to execute multiple independent

programs simultaneously by using multithreading.
A Dual Core Capable DLX(DCC DLX) processor was

implemented using Verilog Hardware Description Lan-

guage at the Register Transfer Level using standard cells

from a 0.25um CMOS process. The design followed

the SMP architecture and was implemented in a shared

memory environment.

A. DLX Microprocessor

DLX (pronounced as "Deluxe") is a model architecture

developed by John L. Hennesy and David A. Patterson and

is intended to be used as an instructional tool in the field of

Computer Architecture. Believed to be the world’s second

polyunsaturated computer, its design philosophy is very

similar to a group of Reduced Instruction Set Computer
(RISC) designs.

DLX is a clean and simplified version of Micropro-
cessor without Interlocked Pipeline Stages (MIPS) ar-

chitecture. Its load/store architecture is characterized by

its pipeline efficiency, the use of a simple load/store

instruction set, and its efficiency as a compiler target.

B. Taxonomy of Parallel Architectures

The idea of using multiple procesors both to increase

performance and to improve availability dates back to

the earliest electronic computers. About 40 years ago,

Flynn[5] proposed a simple model of categorizing all com-

puters that is still useful today.[10] In this classifications,

the DCC DLX is classified under Multiple instruction
streams, multiple data streams processor(MIMD). In this

setup each processor fetches its own instructions and

operates on its own data. MIMD computers exploit thread-

level parallelism, since multiple threads operate in parallel.

Famous examples of MIMD computers are Intel’s Core

Duo and AMD’s Athlon 64 X2.

C. Atomic Instructions

Atomic instructions atomically access and update one

or more memory locations. Being atomic means that the

set of actions done is considered a single action. Atomic

Instructions are required in multicore processors in order

to facilitate variable locking mechanisms and to insure that

at any one time only one processor is accessing a shared

variable[7]. The following atomic instructions are added

to the DLX Instruction set.

CompareAndSwap:CAS(address,old,new)



if old == (address)
(address) <= new

FetchAndAdd:FAA (k,loc)
(loc) <= (loc) + k

TestAndSet:TAS (reg)
if (reg) == #unlocked

(reg) <= #locked
Loadlink:LL (R1,R2,R3)

R1 <= R2; R2<=(R3)
StoreCond:SC (R1,R2,R3)

if R1 == R2
(R2) <= R3

II. METHODOLOGY

To be able to implement a dual core capable DLX core,

several assumptions were made. Simultaneous Multipro-

cessing (SMP) was the multicore architecture used wherein

two processors share a single memory and address space.

SMP was chosen because it is the best architecture suited

for multicore implementations with low number of cores.

Also it was assumed that the DCC DLX core will be

given the first memory access after boot up. This case was

assumed because a deadlock would occur if both cores

would try to access at boot up.

A. Implementation

HDL was used to model systems at various levels of

abstraction. The project design and implementation started

at the behavioral level. After verifying the functionality in

the behavioral level the design was then coded in rtl. The

blocks were synthesized to generate the netlist from the

standard cells used. The synthesized gates were simulated

again, but this time, with the necessary timing delays taken

into account. The place and route tool was used to produce

and optimize the layout of the circuit. The final layouts

were constructed to verify communication between the

computational cores. Results of the Base DLX implemen-

tation were then compared with the final multicore capable

DLX implementation. Illustrated in Figure 1 is the design

methodology.

B. Testing/Verification

1) Behavioral Level Testing: To verify the functionality

of the Behavioral model of the Dual Core capable DLX

Microprocessor the group used several test cases and

stages. First, the individual blocks were tested for proper

functionality before integration. After the individual blocks

were tested and verified, blocks were integrated on a per-

stage basis. This yielded 5 major blocks, which correspond

to the 5 stages of an execution of instruction. After the

major blocks have been tested and verified, all these

blocks were combined to make the dual core capable 32-

bit DLX Microprocessor. The DCC DLX was then tested

under normal pipeline execution, without the occurrence

Fig. 1. Design Methodology

of any hazards or interrupts. Then the behavioral model

was tested for proper execution of the 51 instructions in

the DLX instruction set. The DCC DLX Microprocessor

was also tested for all the possible forwarding paths in the

pipeline and all types of stalls due to data hazards. After

exhausting all cases of data hazards, the behavioral model

was verified under all possible interrupts, with proper

prioritization of the interrupt signals. It was tested using

sample programs such as factorial and greatest common

factor (GCF). These sample programs combined all the

important aspects in the testing of the behavioral model.

At this stage only one core was tested, since the Dual

Core Capable DLX microprocessor can also function as a

single processor. After the testing of the dual core capable

DLX as a single processor, the dual core capability of the

processor was verified by testing the atomic instructions.

From the point of view of the DCC DLX, there is another

processor executing a different set of programs which

needs to access the memory.

2) RTL Level Testing: The RTL model was also tested

for its functionality. All the test benches that were used in

the behavioral model were also used in this level of testing.

The same sequence of testing followed, first one DCC

DLX microprocessor (functioning as a single processor)

was tested in the RTL level, and then two dualcore capable

DLX microprocessors were tested also in the RTL level.

3) Gate Level Testing/Netlist Simulation: The Standard

Delay File (SDF) was extracted during synthesis and was

used in the simulation of the synthesized codes. The syn-

thesized codes were tested using the GCF and Factorial test

programs. At this stage, we expected different simulation

results from the previous levels since gate delays were



introduced.

4) Layout Testing: The generated layout was tested

using the GCF, Factorial test programs and the atomic

instructions. Results from this simulation coincided with

the results in the gate level testing. This is also the level

where the maximum frequency of the Dual core capable

DLX microprocessor is experimented and obtained.

5) Verification: In this stage the synthesized netlist

is compared with the netlist of the layout in able to

confirm the functionality of the layout. The chip layout

was checked for design rule errors from the CMOS process

used.

III. RESULTS AND ANALYSIS

In this section, results gathered from the testing phase

of the project were compared to the results of previous

DLX implementations of the host laboratory, specifically
[3].

A. Area Reports

The Dual Core Capable DLX is larger in area than

the Base DLX base core by 23%. Since the DCC DLX

is capable of operating at a higher frequency–maximum

of 83.33Mhz while Base DLX’s maximum is at 25Mhz–

the synthesis tool have sacrificed area for speed[2]. The

difference in area can also be attributed to the difference in

coding styles and the languages used (Verilog vs VHDL).

Considering that the group used Synopsys tools(instead of

Cadence) synthesis tools were also considered to play a

part in the reported disparity.

The total area for the DCC DLX is 1.78 mm2 while

that of Base DLX is 1.438 mm2.

Fig. 2. Area Comparison on Selected Blocks of Base DLX and DCC
DLX

B. Timing Reports

Three different programs were used to check the func-

tionality of the DLX processor; namely, the GCF, Multiply,

and Factorial programs. The performance of the DLX7

Fig. 3. Area Comparison on Selected Blocks of Base DLX and DCC
DLX

MULTIPLY hex cc cc
Inputs (hex) Results Base DLX DCCDLX
8,181C33 C0E198 99 105
F,181C33 169A6FD 169 175
5F,5F 2341 967 973
59,FFFFFFFE FFFFFF4E 907 915

2,75BCD15 EB79A2A 39 45

GCF hex cc cc
Inputs(dec) Results Base DLX DCCDLX
[200,218] 2 349 351
[193,180] 1 343 345
[17,200] 1 295 309
[156,169] D 205 219
[47,85] 1 163 171

FACTORIAL hex cc cc
Inputs (dec) Results Base DLX DCCDLX
5 78 155 157
6 2D0 223 225
8 9D80 389 391
10 375F00 595 597
12 1C8CFC00 841 843

TABLE I

TIMING RESULTS FOR GCF, MULTIPLY, AND FACTORIAL PROGRAMS

core was then evaluated and compared to the previous Base

DLX implementation as seen on Table I. These programs

were ran assuming that the second core was not enabled,

meaning bus control goes solely to the DLX core. A clock

frequency of 25 MHz and memory access time of one

clock cycle or 40 ns were assumed which are also the

same assumptions used in the base Base DLX.

From the results obtained, we can see that there was a

slight increase in the execution time of the DLX processor.

This increase is attributed to the addition of the Bus

Arbitration Unit, which was responsible for obtaining

bus access to the memory. Additional clock cycles were

needed to evaluate the bus condition causing an increase

in the memory access time of the processor and therefore

delaying the program execution. However, since the other

core is idle, this additional delay can be seen only at start-

up. Upon establishing bus control, normal delays could be



seen on memory accesses done by the DLX core. In the

case that the other core becomes active, additional delays

would be seen when having memory accesses. The overall

timing overhead of the Dual Core Capable DLX core is

only 216.27 ns on the average, which is equivalent to 5

1/2 clock cycles.

C. Power Statistics

An increase in power consumption was expected since

we added additional blocks to implement the dual core

capability. We can see that additional power was consumed

by the Atomic block and the Bus Arbiter. The power

results of the three tests (GCF, Multiply, Factorial) done on

the Dual Core Capable DLX core can be seen on Appendix

C. The results were then compared to the Base DLX core

power results. The reduction in total average power for

the current DLX model is attributed to a significant power

reduction in our Register File. From (Base DLX) 25.6mW,

we were able to reduce it by half to (DCC DLX) 12.98mW.

Since the area of the register file is smaller (see Table 3)

then naturally it has lesser components which can lead

to lesser power consumption. Other than that, all other

blocks registered slightly higher power consumption due

to additional functionalities incorporated on the blocks.

Fig. 4. Power Comparison of Major Blocks

Fig. 5. Power Distribution among blocks

A summary of the power consumption of major blocks

can be seen on Figure 4. Even though the power consump-

tion of the Register File was reduced, it still consumed the

most power among the major blocks. Power consumption

of modified blocks also increased when compared to Base

DLX since generally, additional logic were implemented

in almost all of the blocks.

IV. CONCLUSION

This project demonstrated how the DLX processor could

be modified to include dual core capability. The dual core

capability of the DLX core was implemented using Verilog

HDL and yielded an area overhead of 23% and power

reduction of 17.9%. Addition of the dual core capability

does not interfere with the processor’s performance as

a single core. However, the performance (specifically,

throughput) advantage of a dual core system was not fully

demonstrated as the cores lacked instruction caches critical

to full multicore system operation.

The development of dual core capability for the DLX

microprocessor is an important and crucial step in the

laboratory’s processor development program. For the DLX

microprocessor to maintain its relevance in modern times,

it has to cope and catch up with technologies that are being

implemented, tried, and studied both in the industry and

the academe; hence, the importance of this endeavor and

its related successors.

REFERENCES

[1] Bautista J. A. et. al. "High Level Design Implementation and
Characterization of a 32-Bit 5-Stage Pipelined DLX Micropro-
cessor with Single Level Cache" Undergraduate Student Project,
Department of Electrical and Electronics Engineering, University
of the Philippines, Diliman, November 2005.

[2] Bhatnagar H. “Advanced ASIC Chip Synthesis Using Synopsys
Design Compiler, Physical Compiler, Prime Time.” 2nd ed. Kluwer
Academic Publishing. 2002

[3] Cantavieja, D. F. et. al. “Design and Implementation of a Power-
Optimized DLX Microprocessor" Undergraduate Student Project,
Department of Electrical and Electronics Engineering, University
of the Philippines, Diliman, November 2005.

[4] Di Giacomo, J. “VLSI Handbook. Silicon, Gallium Arsenide and
Superconductor Circuits.” Mc Graw Hill. 1989

[5] Flynn, M.J. "Very High-Speed Computing Systems" Proceedings
in IEEE 54:12 December, 1901-1909

[6] Hamacher, C. et.al. “Computer Organization.” 5th edition.
McGraw-Hill Higher Education

[7] Hovemeyer D., William, P., Spacco J. “Atomic Instructions in
Java.” Department of Computer Science, University of Maryland.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 2002), Málaga, Spain, June 10-14, 2002.

[8] Mano M.M. “Digital Design” 3rd ed. Prentice Hall. 2001
[9] Patterson D.A., Ditzel D. “The Case for the Reduced Instruction

Set Computer.” In ACM SIGARCH Computer Architecture News,
v.8 n.6, p.25-33, October 1980

[10] Patterson D.A., Hennesy JL. “Computer Architecture: A Quanti-
tative Approach.” 4th beta edition. Morgan-Kauffman, 2006.


