
Mitigating NBTI in the Physical Register File

through Stress Prediction

Saurabh Kothawade∗, Dean Michael Ancajas†, Koushik Chakraborty†, Sanghamitra Roy†

∗Qualcomm Inc., San Diego, California

{saurabh.e.k}@gmail.com
†BRIDGE Lab, Electrical and Computer Engineering, Utah State University

dbancajas@gmail.com {koushik.chakraborty, sanghamitra.roy}@usu.edu

Abstract—Degradation of transistor parameter values due to
Negative Bias Temperature Instability (NBTI) has emerged as
a major reliability problem in current and future transistor
generations. NBTI Aging of SRAM cell leads to a lower noise
margin, thereby increasing the failure rate. The physical register
file, which consists of an array of SRAM cells, can suffer from
data loss, leading to system failure. In this paper, we explore a
novel approach by investigating NBTI stress and mitigation at the
instruction granularity. While a wide range of NBTI stress exists
in different registers, the stress induced by specific instructions
is highly predictable. Using such a prediction mechanism, we
propose an NBTI tolerant power efficient physical register file
design. Our approach improves the noise margin in a register
file by 20%, 32%, and 125% for the 45nm, 32nm, and 22nm
technology nodes, respectively. Overall, we observe 14.8% power
saving and a 19.8% area penalty in the register file.

I. INTRODUCTION

Negative Bias Temperature Instability (NBTI) has emerged

as a major reliability challenge for the semiconductor industry

in recent years. SRAM cells, which are the key elements in

register files and caches, are severely affected due to NBTI

aging. This degradation of reliability in the SRAM cell can

result in loss of the stored value. Therefore, register files and

caches are highly prone to failure due to NBTI.

In this paper, we use a novel approach to mitigate NBTI

in the physical register file using an instruction-level analysis.

We investigate NBTI stress from output values generated after

instruction execution and its propagation in the register file.

We observe that static instructions, uniquely identified by their

Program Counter (PC), frequently induce a predictable NBTI

stress on the physical register file. Exploiting this program

characteristics, we explore several predictor designs to detect

instructions producing a large NBTI stress. Subsequently, we

propose an NBTI tolerant physical register file design based

on NBTI stress prediction.

Recent works have proposed techniques to improve relia-

bility in the physical register file by extending the recovery

period during idle cycles [1], [12]. They manipulate bit cell

contents during the idle periods of physical registers to relax

one or more PMOS transistors. The effectiveness of these

techniques strongly depends on the length of the available

idle period. A power-efficient physical register file, where its

total capacity is closer to the architectural register file size,

is likely to have a substantially shorter idle period, thereby

limiting the reliability boost seen in these techniques. Kumar

et al. investigate the SRAM reliability characteristics and

propose the bit inversion technique for SRAM based caches

[7]. However, their technique cannot be used for the register

file as it may add extra delay for register access.

The main contributions of this paper are listed below.

• We investigate the source of NBTI stress in a register file

by studying output value patterns and their storage in a

physical register file. We develop a mechanism to predict

instructions producing high NBTI stress and evaluate

various predictor designs for efficient prediction.

• We propose modifications in the physical register file by

creating register banks and using sized transistors. Using

larger sized transistors offers greater NBTI tolerance, at

the cost of higher energy consumption. Our proposed

technique exploits predictability of NBTI stress at the

decode stage and predominance of narrow width values

[3] to design a power-efficient NBTI tolerant physical

register file. We modify the register renaming policy

to incorporate NBTI-aware register allocation for our

proposed design.

• Finally, we evaluate our proposed approach using a state-

of-the-art full-system simulation infrastructure. We find

that our approach improves the noise margin in a register

file by 20%, 32%, and 125% for the 45nm, 32nm, and

22nm technology nodes, respectively. After accounting

for all overheads, we observe a 14.8% power saving,

while incurring a 19.8% area penalty.

The remainder of the paper is organized as follows: Section

II describes NBTI impact in an SRAM cell. In Section III,

we explain the link between instruction execution and NBTI

stress. In Section V, we describe our proposed changes in the

physical register file structure. Section VI gives details of our

simulation infrastructure and experimental setup. In Section

VII, we present results. We conclude in Section VIII.

II. BACKGROUND

In this section, we estimate NBTI degradation in the SRAM

cells. We study two primary factors in the extent of degra-

dation: (a) input bias probability, (b) transistor size. In our

analysis, we use the Static Noise Margin (SNM) as the measure

of the robustness. SNM is calculated using the butterfly curve

345978-1-4673-3052-7/12/$31.00 ©2012 IEEE

OBP
0.01 0.05 0.1 0.2 0.3 0.4 0.5

%
 S

N
M

 d
eg

ra
da

tio
n

0

20

40

60

80

100

normally−sized

up−sized

(a) SNM degradation vs OBP (7 years, 22nm).

Stress Time (years)
0 1 2 3 4 5 6 7 8 9 10

%
 S

N
M

 d
eg

ra
da

tio
n

0

10

20

30

40

50

60
22nm

22nm−upsized

32nm

45nm

(b) Lifetime SNM Degradation

Fig. 1: SNM Degradation in an SRAM cell due to

NBTI. up-sized indicates SRAM cells built with wider
transistors.

of SRAM cells [13]. The methodology used to measure NBTI

impact is described in Section VI.

A. Input Bias Probability

The input pattern to a transistor is the primary driving

factor for NBTI degradation. The effects of NBTI are caused

by certain input values to the transistors. To understand the

input pattern better, we introduce a parameter called One Bias

Probability (OBP). OBP is the probability of a transistor input

to be at logic 1. When the OBP is close to 0.0 (0%), the PMOS

transistor is stressed for most of the time.

Figure 1(a) shows the SNM degradation of an SRAM cell

for different OBP values. It can be observed that robustness

improves as OBP is increased to 0.5. The SNM is degraded

most when the SRAM cell undergoes high unbalanced stress

(OBP closer to 0.0).

B. Transistor Size

Transistor sizing is one of the methods used to increase

tolerance towards NBTI. Previous works have used transistor

sizing for NBTI mitigation in combinational circuits [6],

[14]. In our work, we exploit up-sized transistors to improve

the SNM of an SRAM cell. The line marked with the up-

triangles in Figure 1(b) indicates SNM degradation for such

a cell. It can be observed that SNM degradation reduces by a

large extent when compared to an SRAM cell without sized

transistors (line marked with squares). Similarly, Figure 1(a)

shows improvement in the SNM for all OBP values compared

to the original cell.

III. INSTRUCTIONS AND NBTI STRESS

In this section, we study the relationship between the bit

patterns of values computed from individual instructions and

its impact on NBTI stress. We find that instructions often

have highly predictable NBTI stress patterns. This observation

opens up new opportunities to design NBTI-aware microarchi-

tectures.

A. Bias Predominance

Typically, values stored in a register file are narrow-width

values [8], [3]. Hence, there is a large number of bit positions

at logic 0, which can potentially lead to a high NBTI stress.

Similarly, there is a substantial number of instructions pro-

ducing outputs capable of generating NBTI stress. To quantita-

tively measure the NBTI stress generated by an instruction, we

look at the instruction’s output bias. When a majority of output

bits are at logic 0, the output can generate a high NBTI stress.

We define a parameter to indicate the output’s bias towards

logic 0, viz. Zero Predominance (ZP). We formally define ZP

as follows: The ZP of an instruction is 1 when more than 75%

of its output bits are at logic 0. Similarly, we say that a zero-

predominant instruction if its ZP is equal to 1. ZP indicates

an instruction’s ability to produce NBTI stress in the register

file.

Figure 2(a) shows the presence of a large number of bit

positions in a register file undergoing high NBTI stress. We

plot the distribution curve of each bit position against its

OBP. Figure 2(a) demonstrates bias distribution curves for two

benchmark programs, widely varying in their characteristics.

The perlbench has its highest peak near 0.0, meaning it has the

largest number of bits at logic 0. On the other hand, bzip2 has

the smallest number of bit positions at logic 0. Relatively, the

number of bit positions at logic 1, is small for all programs.

On average, 57% of the bit positions are always at logic 0

and 18% of bits have OBP close to 0.5. In other words, 57%

of SRAM cells in a register file might store logic 0 during

their entire lifetime. The observation above proves that a large

number of SRAM cells in the register file can potentially suffer

from unbalanced stress and hence high SNM degradation.

Figure 2(b) shows a plot of zero bias predominance for

SPEC CPU2006 benchmark programs. Each bar indicates

the percentage of zero-predominant instructions. Perlbench

has the highest number of zero-predominant instructions, at

71.16%. On the other hand, bzip2 has the least number of

zero-predominant instructions. On an average, 37% of the

instructions have the potential to create high NBTI stress in a

register file.

B. Bias Predictability

Figure 2(b) shows that a large number of instructions

produce high NBTI stress in the register file. Detection of such

instructions before execution can be used to efficiently handle

NBTI stress. In this subsection, we discuss the predictability

of instructions to generate a large stress in a register file. To

predict the bias predominance of any dynamic instruction, we

look at the output bias probabilities of a corresponding static

instruction. When the OBP of a bit position is 0.0 or 1.0,

it implies that the value has not changed during the entire

execution time. Hence, the value of such a bit position is highly

346

OBP
0 0.2 0.4 0.6 0.8 1

S
am

pl
e

P
op

ul
at

io
n(

%
)

0

20

40

60

80

100

bzip2

perlbench

avg

(a) Bias distribution for output bit positions

D
y
n

a
m

ic
 i
n

s
tr

u
c
ti
o

n
s
 (

%
)

0

10

20

30

40

50

60

70

80

��
��
�

��
��
�

	

��
��

�
�

�

�
��
�
��

�
��
�

���
��
��
��
�
�
��
�
���

��
�

��
�

�

��
�

��
�

��
��
��

��

�

��
��
��

��
��
��
��
�
��

(b) Zero Predominance of instructions that compute
new value.

D
y
n

a
m

ic
 I
n

s
tr

u
c
ti
o

n
s
(%

)

0

20

40

60

80

100

75-100% 50-75% 25-50% 0-25%

��
��
�

��
��
�

	

��
��

�
�

�

�
��
�
��

�
��
�

���
��
��
��
�
�
��
�
���

��
�

��
�

�

��
�

��
�

��
��
��

��

�

��
��
��

��
��
��
��
�
��

(c) Level of predictability for instruction outputs.

Fig. 2: Some instructions produce high NBTI stress in the register file. These instructions are predictable.

predictable. To measure the predictability of the complete

instruction output, we count the predictable bits in the output.

Based on the number of predictable output bits, we classify

instructions into four categories.

Figure 2(c) plots the percentage of instructions with four

levels of output bias predictability. Each bar in the plot

is made up of four stacked components corresponding to

different levels of the output bias predictability. The lowermost

component indicates the set of instructions that produce output

values with more than 75% of bit positions being predictable.

In other words, more than 75% output bits of such instructions

have an OBP close to 0.0 or 1.0. The second component from

the bottom indicates the set of instructions that have more

than 50% predictable output bit positions. On an average,

71% of dynamic instructions have more than 50% predictable

bit positions. This observation proves that a large number of

instructions that produce high NBTI stress can be predicted.

Next, we develop a mechanism to identify and predict occur-

rence of stress-generating instructions.

IV. PREDICTING INSTRUCTION LEVEL NBTI STRESS

In this section, we discuss key predictor designs and analyze

their performance. We explore three specific designs: (a) Last

Value Predictor (Section IV-A), (b) Bimodal Predictor (Section

IV-B), and (c) NP Predictor (Section IV-C).

A. Last Value Predictor (LVP)

Figure 2(c) shows that approximately 51% of the instruc-

tions produce values with constant bias. With this observation,

we introduce the Last Value Predictor that predicts the zero

predominance of the output to be the same as the previous

instance. The LVP stores the previous ZP value in the history

table for each static instruction. As the ZP can only have two

possible values, a single bit for each static instruction will

suffice.

The prediction accuracy of the LVP is highest when in-

structions produce constant or sequential values. For instance,

for-loop counters will have the same bit values in its most

significant bits, making them easily predictable. The LVP faces

misprediction each time the instruction output predominance is

different than the previous instance. Hence, a single deviation

from a predominance pattern results in two mispredictions.

Considering the above cases of mispredictions, we improve the

��������	

���

���
�������

������	

���

���
�������

������	

���	����

���
�������

��������	

���	����

���
�������

��	�	�

��	�	�

��	�	�

��	�	�

Fig. 3: Bimodal Predictor State Transition

M
is

p
re

d
ic

ti
o

n
 R

a
te

 (
%

)

0

2

4

6

8

10

12

14

16

18

20 Last-Value Bimodal NP

��
��
�

��
��
�
	

��
��

�
�

�

�
��
�
��

�
��
�

���
��
��
��
�

�
��

�
���

��
�

��
�

�

��
�

��
�

��
��
��

��

�

��
��
��

��
��
��
��
�

��

Fig. 4: The misprediction rate.

predictor design by using two bits to store the predominance

state.

B. Bimodal Predictor (BP)

With the Bimodal predictor, rather than storing the actual

ZP value in the history table, we store the state of bias

predominance prediction. The state of bias predominance

prediction is represented with the help of a 2-bit saturating

counter. Figure 3 shows the state diagram for the BP. Initially,

the counter is in the strongly zero predominant state. It remains

in that state as long as the ZP of each instruction’s instance

is high. When an instance produces an output with a low ZP,

its state is changed to weakly zero predominant. Successive

instances of instructions with low ZP values will change the

state to strongly zero non-predominant. The Strongly zero non-

predominant state corresponds to the pattern where instances

of the instructions produce non-zero-predominant output val-

ues.

The BP adapts better in situations where the ZP value is

alternately changed. It can also tolerate a single deviation from

a bias predominance pattern without misprediction. However,

the BP results in two mispredictions before adapting to a new

pattern.

347

C. NP Predictor

The LVP and BP predictors store the prediction state of

all encountered instructions, regardless of their ZP value. The

NP (Non-zero Predominance) predictor only keeps track of

non-zero-predominant instructions. Hence, its predictor table

is composed of the PC addresses of the instructions that are

likely to produce non-zero-predominant outputs. As a limited

number of instructions are tracked, fewer entries are stored

in the NP predictor compared to LVP and BP. Consequently,

this leads to increased coverage and lesser conflicts as more

entries can be stored in the NP predictor’s history table.

For the NP Predictor, a misprediction can occur in two ways:

1.) An instruction having an entry in the table produces a high

ZP output. 2.) An instruction not having entry in the table

produces a low ZP output. In this work, we only consider the

first case because we find that it results in lower misprediction

rates and lower complexity in the remapping and predictor

circuitry. Considering the second case would mean tagging

the instructions that are not in the table, and remapping their

destination registers once they produce a low ZP output. This

places unnecessary burden in the pipeline because unlike the

former case, such instructions can continue to execute without

affecting the correctness of the output value. However, we do

update the predictor table so that the next time this instruction

is encountered it will be correctly predicted. In sum, the second

case only represents a lost opportunity in using the narrow-

width registers.

D. Predictor Performance

Figure 4 presents the misprediction rates of the three

predictors, each having 8k entries. It can be seen that the

misprediction rate of the NP Predictor is the lowest among the

three predictors. We find that majority of the misprediction

stems from the conflict of entries in the predictor table. As

such, the NP predictor yields lower misprediction rates since

it only tracks instructions with low ZP output. Consequently,

low ZP instructions are also highly predictable in nature. On

average, NP misprediction rate is about 40% less compared to

the other two predictors.

V. MINIMIZING NBTI DEGRADATION IN THE REGISTER

FILE

After successful prediction of instructions that generate a

high NBTI stress, we use this information to minimize NBTI

impact in the register file. In the following subsections, we

describe proposed modifications in the physical register file

for improving reliability.

A. Design Overview

We split the register array into two banks, each having

an equal number of registers. One of the register banks is

exclusively used for allocating registers for the outputs of zero

predominant instructions. As most of the zero predominant

outputs are narrow-width, we compress register widths to 16-

bits, which is discussed more in Section V-B3. The reliability

of the narrow-width register bank is further improved by using

up-sized transistors. The second register bank is used for the

remaining instructions, which produce non-zero predominant

outputs.

We change the register allocation policy to allocate registers

based on the predicted ZP value of an instruction. We handle

special cases of mispredictions by performing a remapping of

the physical registers. Sections V-C and V-D describe in detail

the modifications in the decode and execute pipeline stages to

handle mispredictions.

B. Register File Modifications

In this subsection, we describe our proposed changes in the

structure of the physical register file.

1) Banked Register File: As mentioned earlier, the SRAM

cells storing logic 0 (or 1) for a long period of time undergo

high NBTI stress. The SRAM cells of the more significant bits

in a register file show a similar behavior. Compressing such

outputs can reduce the number of bits at logic 0, without losing

important information. Based on this observation, we divide

the register array into two banks with different register widths.

Configuration (c) in Figure 5 shows the new register file with

two banks of variable widths. The first bank consists of 64-bit

registers, while the second bank consists of compressed 16-bit

registers.

2) NBTI Tolerant Bank: By compressing the widths of

zero predominant outputs, we get rid of a large number of

bits storing logic 0 and save a substantial amount of NBTI

stress. However, there could still be many bits at logic 0

in the compressed output. These bit positions can further

reduce the overall reliability of a physical register file. To

increase the noise margin of a narrow-width bank, we use

up-sized transistors for NBTI tolerance. As seen in Figure

1, the effective SNM degradation of SRAM cells employing

up-sized transistors is smaller than that of SRAM cells with

normally sized transistors. Therefore, the introduction of up-

sized transistors improves the overall reliability of entire

register file.

Configurations (b) and (d) in Figure 5 show tolerant register

banks in gray. Benefits of register file banking and up-sized

transistors are discussed in Section VII. Next, we describe

the modified register allocation policy and special cases of

mispredictions in detail.

3) Register Compression: In modern 64-bit processors,

most register outputs that are generated do not require the

full width of the 64-bit registers. Typically, these output values

have leading 0’s or 1’s that can be truncated. We formally refer

to these contents as narrow-width values because they can be

stored in a register with fewer bits. We apply compression only

on narrow-width values because they are simple to compress

and hence, will have low hardware overhead.

Before compression is to be done, it must be determined if

an output value is narrow-width or not. We insert a detector

circuit after each functional unit that will signal if an output

is narrow-width. This circuit can be implemented as a combi-

nation of basic logic gates (AND, NOT, OR) to compare the

most significant bits in the outputs.

348

����������

���������	

���������
�	

��

��

����������

����������
���	�

���������
��

����������
�	�

� ��
 �

����������

����������
���	�

���������
��

����������
�	�

� ��
 	�

����������

����������
���	�

���������
��

����������
�	�

� ��
 	�

���������	�

���������
���������
������	�������

��������������������
������	�������

���������������	���������	�������

������������	�����	��

���	���������	�������

������������	�����	��

��������
������	�������

Fig. 5: Various configurations of the register file.
������

���	�
��	�
����������

�����
��	�
���

��	�
��	�

��

����
����������

��������

����
������	�

��������

��

��� ��

�������� ��

�������� ��

��������

���������� ����������

� �

��

� �

�

��

(a) Flow of events during decode
stage

���������	�
	�����
�
���

�
����
��
�����

�����
��� ���

��	�
���

��	��

��������

��	�
���

����

��������

���
�
�������� ��������

����
��
��

� �

� �

(b) Flow of events during execution
stage to handle bank mispredictions

Fig. 6: Modifications in Register Allocation Policy.

C. Modified Register Allocation Policy

We require modifications in the register allocation policy

as one of the banks is exclusively used for zero predominant

outputs. Figure 6(a) outlines the new register allocation pro-

cess. After predicting the ZP value for a given instruction,

a register from one of the banks is allocated. If the ZP is

high, a short register from the narrow-width bank is allocated

as its destination. Similarly, a wide register is allocated for

a non-zero-predominant instruction. During certain program

phases, when there is a high demand for registers from one of

the banks, register allocation may fail. In such situations, we

stall the given instruction in the decode stage and wait for the

registers to be free.

D. Handling Mispredictions:Remapping in Execution Stage

Figure 6(b) shows the sequence of events during a mis-

prediction. After the execution unit has calculated the output,

its width is calculated to determine if an appropriately-sized

register has been allocated. If the output is a non-narrow value,

a wide register must be used as its destination. If the register

allocated in the earlier stage is a narrow one, then the execution

stage is stalled to allow for remapping.

The remapping of physical registers in the execution stage

is done by modifying the rename table and updating the

instruction register dependencies. Remapping is accomplished

in two steps: 1.) A free destination register must be allocated.

2.) Instructions in the earlier pipeline stages that are dependent

on the mispredicted instruction must also update their source

register mappings. This is done by broadcasting both the old

and new tags of the renamed register so that the issue queue

entries are fixed in-place.

Simply stalling the fetch and decode stage when remapping,

as done during unavailability of instruction window entries or

free physical registers, will not be sufficient because it can

lead to a pipeline deadlock when there are no free registers.

To handle this case, we squash younger instructions from the

pipeline and update the predictor table once we see that the

physical register is full. Squashing younger instructions adds

some registers in the free pool, which can be used by the

mispredicted instruction once it is re-executed.

E. Performance Overhead

With the modified register file, performance of the processor

can suffer in three different situations:

1) During the decode stage, performance is lost if there

are no free registers in the requested register bank. The

instruction is stalled until an older instruction commits

and frees up a register.

2) During remapping in the execute stage, we assume a

one clock cycle penalty to correct the register mapping,

given that there is a free register.

3) When there are no free registers during remapping in the

execute stage, the younger instructions in the pipeline

need to be flushed, as explained earlier. We assume

a four cycle penalty to re-execute the mispredicted

instruction. Though this only happens rarely in modern

processors as more than 95% of the time, only 50% of

the physical register file capacity is used [4].

We find that the loss in IPC due to the above cases are

on average 1.75%. We discuss the results of performance

overhead in Section VII-C.

VI. METHODOLOGY

A. Architectural Simulations

For investigating register file configurations and its impact

on performance, we use a full-system simulator built on top

of the Wind River SIMICS [9]. For our experiments, we use

the SPARC V9 ISA. However, we use our own detailed timing

model to enforce timing characteristics of a 4 wide superscalar

out-of-order core. Our modeled processor has a register file

structure similar to SPARC V9. The architecture register file

contains 160 windowed registers. We have implemented MIPS

R10K style register renaming [15] with a physical register file

of 224 registers. Various register file configurations shown in

Figure 5 are explained in section VII.

We use several SPEC CPU2006 benchmarks on a Solaris 9

[5]. We use the three most representative Simpoint[11] phases

from these SPEC benchmarks in our study.

B. NBTI Effect Measurement

When the input to a PMOS transistor is low, holes in the

inversion layer break Si-H bonds at the oxide layer. This

phenomenon leads to an increase in the absolute value of the

threshold voltage of the transistor (stress phase). When the in-

put to a PMOS transistor is high, the threshold voltage slowly

349

starts restoring to the original value (recovery phase). We

model a standard 6-T SRAM cell in HSPICE to measure NBTI

impact. The NBTI wearout alters the transfer characteristics

of cross-coupled inverters, decreasing the noise margin. We

evaluate the SNM at different time intervals by measuring this

potential difference. We use a predictive model to determine

the change in transistor threshold voltage due to NBTI [2].

C. Methodology for Area and Power Estimations

For finding the savings in Area and Power of the modified

register file, we describe structures in Verilog. We synthesize

the hardware using the Synopsys Design Compiler and the

45nm TSMC library. We synthesize various register file con-

figurations for fixed latency and obtain the area and power

estimation from this synthesized Verilog. We use the CACTI

6.0 tool to perform area and power analysis of the predictors

[10] for the 45nm technology node.

VII. RESULTS

In this section, we present the results of improvement in

SNM, power efficiency and performance overhead due to

modifications in the register file. We compare our results

with the Recovery Boosting technique discussed in [12]. We

experiment with various configurations of the physical register

file and show the results for SNM improvement in Figure 7.

Then we discuss the savings in area and power due to our

proposed technique. Finally, we show performance impact of

our proposed schemes.

We evaluate six different configurations of the register file,

and present results with respect to the Baseline configuration.

• Baseline: This refers to the traditional design of a phys-

ical register file with 64-bit wide registers only. Refer to

configuration (a) in Figure 5.

• comp,norm: This refers to a compressed banked register

file design where one of the banks has 16-bit wide

registers only. Refer to configuration (c) in Figure 5.

• rec: This refers to the modified register file in [12] using

the Recovery Boosting technique during the idle period.

In our processor configuration, we found the idle period

to be in the range of 16.65%-58%, with an average of

45.27% of the total physical register lifetime.

• full,up: This refers to a banked physical register file where

all registers are 64-bit wide only. One of the banks is

made up of up-sized transistors. Refer to configuration

(b) in Figure 5.

• comp,up: This refers to a compressed banked register file

design where one of the banks has 16-bit wide registers

only. One of the banks is made up of the up-sized

transistors. Refer to configuration (d) in Figure 5.

A. Results for SNM improvement

Figure 7 shows the average percentage improvement in

the SNM of the register file configurations for the 22nm,

32nm and 45nm technology nodes. The first bar in the

cluster indicates 9-12% (32nm) improvement in SNM with

compression of one register bank to 16-bits. The Recovery

boosting technique results in 18-26% SNM improvement. For

full,up, the SNM increase is highest among all configurations.

The last configuration comp,up gives a smaller improvement

in SNM compared to full,up, but with the highest savings in

power and area. Ideally, we expected the SNM to increase

from full,up to comp,up as the number of SRAM cells of a

higher significant bits are reduced. But after careful analysis,

we found that the SNM of the significant SRAM cells with

up-sized transistors is more than the average SNM of the

first bank. Hence, SRAM cells with up-sized transistors for

significant bits improve the average SNM of the entire register

file. On an average, comp,up shows an SNM improvement of

20%, 32%, and 125% for the 45, 32 and 22nm technology

nodes, respectively.

B. Area and Power Comparison

Our technique improves SNM by compressing registers

without losing the functional correctness. Effectively, the

modified register file has fewer SRAM cells. Reducing the

size of hardware results in savings in area and power. Figure

8(a) shows the percentage savings for area and power for our

proposed techniques with respect to the baseline.

Configuration comp,norm, where the second register bank

is compressed to 16-bit only, provides 34.5% savings in the

overall area. As the number of SRAM cells are reduced,

both dynamic and leakage power decrease. Overall savings in

dynamic, leakage and total power are 37%, 29.9% and 34.4%,

respectively.

When transistors are up-sized to give a better SNM, they

consume more power and occupy a larger area. Hence, up-

sizing the transistors in SRAM cells results in area and power

overhead. For full,up, overall area and power increases by

11.2% and 5%, respectively. In comp,up, area and power

overhead is compensated by reducing the width of one of the

register banks. Effective savings in area and power are 28%

and 33%, respectively.

Figure 8(b) shows the combined area and power savings for

the technique comp,up along with the NP predictor compared

to the Baseline. We can see that the total power savings due

to our proposed approach varies from 30.68% to 14.86% as

the predictor size is increased from 512 to 8k. We save area

in all configurations except for the 8k predictor. Configuration

comp,up combined with the 8k predictor has an area overhead

of 19.77%.

C. Performance Analysis

Figure 9 shows the performance impact due to mispredicted

instructions being stalled, remapped and sometimes causing

pipeline flushes. The average IPC reduction across all bench-

marks is only 1.75%. Gobmk and mcf experience the most

reduction because they have the highest misprediction rates.

xalancbmk and milc observe the least performance reduction

due to their low misprediction rates.

VIII. CONCLUSION

NBTI is one of the critical challenges for the semiconductor

industry today. NBTI in the register file reduces the overall

350

Im
p

ro
v
e
m

e
n

t
in

 S
N

M
 (

%
)

0

5

10

15

20

25

30

35

40 comp,norm rec full,up comp,up

as
ta
r

bz
ip
2

de
al
II
gc
c

G
em
sF
D
TD

go
bm
k

lib
qu
an
tu
m
m
cf
m
ilc

om
ne
tp
p

pe
rl
be
nc
h

po
vr
ay

sj
en
g

sp
hi
nx

xa
la
nc
bm
k

(a) 45nm

Im
p

ro
v
e
m

e
n

t
in

 S
N

M
 (

%
)

0

10

20

30

40

50

60 comp,norm rec full,up comp,up

as
ta
r

bz
ip
2

de
al
II
gc
c

G
em
sF
D
TD

go
bm
k

lib
qu
an
tu
m
m
cf
m
ilc

om
ne
tp
p

pe
rl
be
nc
h

po
vr
ay

sj
en
g

sp
hi
nx

xa
la
nc
bm
k

(b) 32nm

Im
p

ro
v
e
m

e
n

t
in

 S
N

M
 (

%
)

0

50

100

150

200 comp,norm rec full,up comp,up

as
ta
r

bz
ip
2

de
al
II
gc
c

G
em
sF
D
TD

go
bm
k

lib
qu
an
tu
m
m
cf
m
ilc

om
ne
tp
p

pe
rl
be
nc
h

po
vr
ay

sj
en
g

sp
hi
nx

xa
la
nc
bm
k

(c) 22nm

Fig. 7: Percentage improvement in SNM with respect to the Baseline.

comp,norm full,up comp,up

%
 S

av
in

gs
 w

rt
 B

as
el

in
e

−30

−20

−10

0

10

20

30

40

50 DynamicPower LeakagePower TotalPower Area

(a) Savings without predictor overhead

512 1k 2k 4k 8k

%
 S

av
in

gs
 w

rt
 B

as
el

in
e

−50
−40
−30
−20
−10

0
10
20
30
40 TotalPower Area

(b) Savings with predictor overhead

Fig. 8: Area and Power savings for various configura-
tions of the proposed register file.

%
�I
P

C
�R

e
d

u
c
ti
o

n

0

0.5

1

1.5

2

2.5

3

��
��
�

��
��
�

	

��
��

�
�

�

�
��
�
��

�
��
�

���
��
��
��
�
�
��
�
���

��
�

��
�

�

��
�

��
�

��
��
��

��

�

��
��
��

��
��
��
��
�

Fig. 9: Performance Overhead due to Stalling, Remap-

ping and Pipeline Flushing.

reliability of the processor and potentially causes system

failure. In this paper, we proposed a novel approach for

mitigating NBTI by looking at instructions producing a large

NBTI stress in a register file. We found that some of the

instructions produce values that can cause high NBTI stress

in the register file, while other instructions produce values

which have limited impact. With this observation, we designed

a prediction mechanism for detecting instructions that produce

a high NBTI stress. To increase the overall reliability of the

register file, we divided the register file into two banks and

used up-sized transistors. We show that this approach provides

substantial improvement in the average SNM of the register

file. Our techniques also result in reduction of total area and

power consumption.

Acknowledgments

This work was supported in part by National Science Foun-

dation grant CNS-1117425 and Micron Foundation. Any opin-

ions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] J. Abella, X. Vera, and A. González. Penelope: The nbti-aware processor.
In Proc. of MICRO, pages 85–96, 2007.

[2] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula.
Predictive modeling of the nbti effect for reliable design. In IEEE

Custom Integrated Circuits Conference, pages 189 –192, sept. 2006.
[3] D. Brooks and M. Martonosi. Dynamically exploiting narrow width

operands to improve processor power and performance. In HPCA, pages
13–22, 1999.

[4] J. A. Butts and G. S. Sohi. Use-based register caching with decoupled
indexing. In Proceedings of the 31st annual international symposium on

Computer architecture, ISCA ’04, pages 302–, Washington, DC, USA,
2004. IEEE Computer Society.

[5] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, 2006.
[6] K. Kang, H. Kufluoglu, M. Alain, and K. Roy. Efficient transistor-level

sizing technique under temporal performance degradation due to nbti.
In International Conference on Computer Design, pages 216 –221, oct.
2006.

[7] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Impact of nbti on sram
read stability and design for reliability. In Proc. of ISQED, pages 210–
218, 2006.

[8] M. Lipasti, B. Mestan, and E. Gunadi. Physical register inlining. In
Proc. of ISCA, pages 325 – 335, june 2004.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. IEEE Computer, 35(2):50–58, Feb 2002.

[10] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Cacti 6.0: A
tool to model large caches. School of Computing, University of Utah,

Technology Report, 2007.
[11] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution

analysis to find periodic behavior and simulation points in applications.
In PACT, pages 3–14, 2001.

[12] T. Siddiqua and S. Gurumurthi. Enhancing nbti recovery in sram arrays
through recovery boosting. IEEE Trans. on VLSI Systems., PP(99):1,
2011.

[13] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems

Perspective. Addison Wesley, 2004.
[14] X. Yang and K. Saluja. Combating nbti degradation via gate sizing. In

Proc. of ISQED, pages 47 –52, march 2007.
[15] K. Yeager. The mips r10000 superscalar microprocessor. IEEE Micro,

16(2):28–41, April 1996.

351

