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Abstract—With aggressive technology scaling, the complexity
of the global routing problem is poised to rapidly grow. Solving
such a large computational problem demands a high throughput
hardware platform such as modern Graphics Processing Units
(GPU). In this work, we explore a hybrid GPU-CPU high-
throughput computing environment as a scalable alternative
to the traditional CPU-based router. We introduce Net Level
Concurrency (NLC): a novel parallel model for router algorithms
that aims to exploit concurrency at the level of individual nets.

To efficiently uncover NLC, we design a Scheduler to create
groups of nets that can be routed in parallel. At its core, our
Scheduler employs a novel algorithm to dynamically analyze
data dependencies between multiple nets. We believe such an
algorithm can lay the foundation for uncovering data-level
parallelism in routing: a necessary requirement for employing
high throughput hardware. Detailed simulation results show an
average of 4X speedup over NTHU-Route 2.0 with negligible loss
in solution quality. To the best of our knowledge, this is the first
work on utilizing GPUs for global routing.

I. INTRODUCTION

Global routing problem (GRP) is one of the most com-

putationally intensive processes in VLSI design. Since the
solution of the GRP is used to guide further optimizations

before tape-out, it also becomes a critical step in the design

cycle. Consequently, both the execution time and the solution
quality of the GRP substantially affects the chip timing, power,

manufacturability as well as the time-to-market.
Aggressive technology scaling introduces several additional

constraints in the GRP, significantly increasing the complexity
of this important VLSI design problem [7], [15]. Alpert et

al. predicts that at 32nm there will be 4-6 metal widths and

20 thicknesses across 12 metal layers [1]. Furthermore, IBM
envisions an explosion in design rules beyond 22nm that

will make GRP a multi-objective problem [14]. Unfortunately,

current CPU-based routers will prove to be inefficient for the
increasingly complex GRP as these routers only solve simple

optimization problems [9], [22].
Tackling this huge computationally complex problem would

require a platform that offers high-throughput computing such
as a Graphics Processor Unit (GPU). Traditionally, a GPU’s

computing bandwidth is used to solve massively parallel

problems. GPUs excel in applications that repeatedly apply a
set of operations on a big data set, involving single instruction

multiple data (SIMD) style parallel code. Several existing

VLSI CAD problems have seen successful incarnation in
GPUs, delivering more than 100× speedup [6], [10], [11].

However, the canonical GRP does not fit well into such

an execution paradigm because routing algorithms repeatedly
manipulate shared data structures such as routing resources.

This sharing of resources disrupts the data-independence re-
quirement of traditional GPU applications. Hence, existing

task-based parallel routing algorithms must be completely

revamped to make use of the GPU bandwidth.
In the light of these technology trends, we propose a

hybrid GPU-CPU routing platform that enables a collabora-

tive algorithmic framework to combine data-level parallelism

from GPUs with thread-level parallelism from multicores. Our
work specifically addresses the scalability challenges posed

to current global routers. Till date, there has been very few

works that parallelize the GRP by using multicore processors
[17], [27]. However, none of these are designed to exploit high

throughput computing platforms such as the GPU.
Exploiting the computation bandwidth of GPUs for the

GRP is a non-trivial problem as the overhead of sharing
resources hurts the overall performance. In this work, we

use a fundamentally new mode of parallelism to uncover the
performance potential of the GPU. We propose a novel Net

Level Concurrency (NLC) model to efficiently consider the

data dependencies among all simultaneously routed nets. This
model enables parallelism to scale well with technology and

computing complexity.
Following are the major contributions of our work to global

routing research:

• GPU-CPU Hybrid Routing: We propose an execution

model that allows cooperation of the GPU and the CPU

to route multiple nets simultaneously through Net Level

Concurrency (NLC). To the best of our knowledge, this

is the first work on utilizing GPUs for global routing.

The GPU global router uses a Breadth First Search
(BFS) heuristic while the CPU router uses A* maze

routing. Together, they provide two distinct classes in
the routing spectrum. The high-latency low-bandwidth

problems are tackled by the CPU, whereas the low-

latency high-bandwidth problems are solved by the GPU.
We believe this classification is the key to efficiently

tackle the complexity increase of the GRP on massively

parallel hardware.
• Scheduler: We develop a scheduler algorithm to explore

NLC in the GRP. The scheduler produces concurrent

routing tasks for the parallel global routers based on
net dependencies. The produced concurrent tasks are

distributed to the parallel environments provided by the

GPU and multicore CPU platforms. The scheduler is
designed to dynamically and iteratively analyze the net

dependencies, hence limiting its computational overhead.

• GPU breadth-first search: We propose a breadth-first
search based path finding algorithm on a GPU. This
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algorithm utilizes the massively parallel architecture for

routing and back tracing. Our approach is able to find the

shortest weighted path, and achieves high computational
throughput by simultaneously routing multiple nets.

The remainder of this paper is organized as follows: In
Section II, we briefly discuss related literature. Section III

describes the overview of our GPU-CPU router. We discuss the

challenges of a scalable parallel routing algorithm in Section
IV. Section V presents our detailed Scheduler design, while

our GPU-CPU router implementations are described in Section

VI. We show our results in Section VII and we conclude in
Section VIII.

II. RELATED WORK

In 2007 and 2008, the International Symposium on Physical

Design (ISPD) held two global router competitions. These

contests promoted the development of many recent global
routers. These routers typically employ a collection of well-

studied routing techniques. Roughly, we can categorize them

into two types: sequential and concurrent. The sequential
techniques apply maze routing followed by a negotiation-

based rip-up and reroute (RRR) scheme. RRR was originally
introduced in Pathfinder for FPGAs to route macro cells [20].

Consequently, it has been used to recursively reduce overflows

in the following routers: FGR [24], NTHU-Route 2.0 [2],
NCTUgr [8], NTUgr [3] and Archer [23]. The concurrent

algorithms apply Integer Linear Programming (ILP) to achieve

an overflow-free solution [4], [26].
GRIP [26] currently holds the best solution quality in open

literature of all ISPD 2007 and 2008 benchmarks. However, its

pure ILP-based approach requires significantly longer runtime

compared to the negotiation-based RRR scheme. Even the
runtime reported in their parallel PGRIP [27] router was still

relatively high.
When problems approach a larger scale, sequential global

routers are more popular because the negotiation-based RRR
scheme offers a much better trade-off between solution quality

and runtime. This scheme can even be applied in addition to
an ILP-based approach to reduce runtime [4]. However, the

downside of the sequential approach is the heavy dependency

of solution quality on the routing order of nets.
Due to this reason, parallelization of negotiation-based RRR

scheme is difficult. Routing multiple nets simultaneously could

jeopardize the routing order and create race conditions on

shared routing resources among threads. Recently, Liu et
al. adopted a collision-aware global routing algorithm with

Bounded-Length maze routing on a quad-core system [17].

They implemented a rudimentary workload-based paralleliza-
tion technique with simple collision-awareness algorithm.

Their router has achieved good speedups on 4 threads.
Our work is the first to use a high-throughput hybrid

environment (GPU-CPU) to tackle the GRP. As technology
develops, the boundary between SIMD (single instruction

multiple data) and SISD (single instruction single data) will
soon shrink [25]. This work will lay the foundation for using

hybrid high-throughput environment for global routing.

III. OVERVIEW OF GPU-CPU GLOBAL

ROUTING

In this Section, we give an overview of our GPU-CPU
global router.
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Fig. 1: Global router design flow.Top left section is initialization
phase while bottom left is post-routing phase. Steps in these two sections are
also present in other CPU-based routers. Right section is rip-up and reroute, we
enhanced this section by using a scheduler. Our contributions are highlighted in
dark background shading.

A. Objective

Like other global routers [2], [3], [4], [8], [18], [23], [24],
[21], [28], [27], the GPU-CPU global router has three major

objectives. First is the minimization of the sum of overflows

among all edges. Second is to minimize the total wirelength
of routing all the nets, and third is the minimization of the

total runtime needed to obtain a solution.

B. Design Flow

The flow of our global router is shown in Figure 1. The
initial global routing solution is generated as the following:

we first project a multi-layer design on a 2D plane and use

FLUTE 2.0 [5] to decompose all multi-pin nets into sets of
two-pin subnets. Consequently, we apply edge shifting on all

the nets to modify their initial topologies. We then perform
initial routing and create the congestion map.

During the main phase, we apply negotiation-based scheme

to iteratively improve the routing quality by ripping-up and

rerouting the subnets that pass through overflowing edges.
We route each subnet within a bounding box, whose size

is relaxed if the subnet is unable to find a feasible path

(Section VI-C). The order of the subnets to be ripped-up and
rerouted is determined through congested region identification,

an algorithm that collects subnets that are bounded within the

congestion region (Section VI-D).

The main phase completes when no overflow is detected.
Then we apply layer assignment to project the 2D routing

plane back onto the original multi-layer design. The layer
assignment technique is similar to that described in [24].

C. Global Routing Parallelization

The parallel global router strives for high throughput by

maximizing the number of simultaneously routing nets. How-

ever, the negotiation-based RRR scheme is strongly dependent
on the routing order. Routing nets simultaneously regardless
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demand << capacity

demandV =capacity

demand>>capacity

demandH=capacity

A B A B BA

D.)

Fig. 2: Parallel router must have consistent view of re-
sources. A.) Before rip-up and re-route B & C.) Viewpoint of each thread. They
unknowingly allocate conflicted resources D.) An overflow is realized at the end of
R&R when both threads back track.

of their order might cause degradation in solution quality and
performance.

We tackle this problem by examining the dependencies
among nets, and extracting concurrent nets from the ordered

task queue. These nets can then be routed simultaneously

without jeopardizing the solution quality. We now discuss
challenges of extracting concurrent nets (Section IV), and

tackling them through a novel Scheduler (Section V).

IV. ENABLING NET LEVEL PARALLELISM IN

GLOBAL ROUTING

In this Section, we will explain the requirements of enabling

data-level parallelism in the GRP: a necessary step for exploit-

ing high throughput platforms such as GPUs.

A. Challenge in Parallelization of Global Routing

There are two main approaches in parallelizing the global

routing problem. First, the routing map can be partitioned into

smaller regions and solved in a bottom-up approach using
parallel threads [13], [16], [27]. Second, individual nets can

be divided across many threads and routed simultaneously. We

call this Net Level Concurrency (NLC). NLC can substantially
achieve better load-balancing and uncover more parallelism.

However, it also comes at the cost of additional complexity.

Unlike partitioning, NLC allows sharing of routing re-

sources between multiple threads. Consequently, to effectively
exploit NLC, one must ensure that threads have current usage

information of the shared resources. Without such information,

concurrent threads may not be aware of impending resource
collisions, leading to unintentional overflow and degradation in

both performance and solution quality [17]. This phenomenon

is demonstrated in Figure 2, where both the threads consume
the lone routing resource resulting in an overflow.

B. Achieving NLC

Unfortunately, collision-awareness alone cannot guarantee

reaping performance benefits by employing NLC on high
throughput platforms. This is best explained through Figure

3. In this example, we assume that there is a task queue

and that threads continually get a net to route from this
queue. We also assume that nets in the queue are ordered

based on the congestion of their path. Finally, there are two

layers (horizontal and vertical) available for routing with de-
mands indicated as demandH and demandV . When multiple

threads are processing a congested region, as in Figure 3B,

concurrent routing will cramp limited resources to specific
threads, sacrificing performance and solution quality. This

Fig. 3: Collision awareness alone can hurt routing solu-
tion. A.) 4-thread router processing a particular congested region, 1 net/thread
B.) Routing solution generated via collision-aware algorithm. Some resources are
wasted due to overhead of collision awareness because threads are discouraged
to route on cells (black, green, yellow and blue cells) that were previously used
by another thread. C.) With proper scheduling, only one thread is processing this
particular region and some of the resources are recycled. Remaining threads are
routing other congested areas in the chip (not shown).

problem is exacerbated with increasing number of threads and

circuit complexity. However, we observe that we can recover
substantial performance by allowing threads to concurrently

route in different congested regions. In other words, a single

thread can process the region shown in Figure 3C.
Therefore, the key to achieving high throughput in NLC

is to identify congested regions and co-schedule nets that

have minimal resource collisions. In the next Section, we
will discuss our proposed Scheduler design.

V. SCHEDULER

In this Section, we describe our Scheduler that dynamically

examines the dependencies among nets in an ordered task

queue, and extracts concurrent nets to be dispatched to the
GPU and CPU routers for parallel routing.

A. Nets Data Dependency

We create an explicit routing order for Rip-up and Re-Route

(RRR) from all the nets found within the same congested

region. The order is derived by a comparison of area and aspect
ratio of the nets. Certain nets are given higher priority in this

order (e.g., nets covering larger area with a smaller aspect
ratio), based on the ease of identifying an overflow free path.

This routing order introduces data dependencies among nets.

Each 2-pin net (subnet) has a bounding region that constrains
its demand for routing resources. We define independent

subnets as subnets with no overlapping bounding region, as

these can be routed simultaneously. Subnets with intersecting
bounded regions cannot be routed concurrently due to shared

resources. The data dependency among them dictates that the

original routing order needs to be preserved in order to achieve
the same routing quality.

Honoring the routing sequence due to net dependencies is

crucial for our parallel model. The existing task-based parallel
global router does not examine the net dependency when

exploiting concurrency [17]. As a result, more than 41% of the

subnets are affected by collisions in shared routing resources.
This model does not suit well in a GPU-based concurrency

framework. Due to the lack of synchronization mechanism for

thread blocks in the GPU hardware, we need to avoid resource
collision on the GPU’s device memory.

In this paper, we propose a Scheduler to generate inde-

pendent routing tasks for the parallel global routers. The data
dependency is iteratively analyzed, thereby limiting its analysis
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Fig. 4: Routing problem with nets overlapping each other

(a) Colored Tiles (b) Dependency Graph

Fig. 5: Results after the 1st iteration (a) coloring of tiles: bigger
nets dominate ownership over smaller ones. Only A and D can be routed together
because other nets are dependent on D. (b) Net dependencies are derived from
the colormap.

overhead while providing precise dependency information.

First, the data dependency among nets is constructed in a
dependency graph. Then we exploit parallelism by routing the

independent nets. The parallelism created by our model can

exploit massively parallel hardware without causing resource
collision or jeopardizing the routing order. As a result, our

GPU-CPU parallel global router achieves deterministic routing
solutions.

B. Net Dependency Construction

In this Subsection, we present the scheduler algorithm to

construct the subnet dependencies. As an example, a selection
of 2-pin nets (subnets) are illustrated in Figure 4. In this

example we assume that each subnet’s bounding region is the

same size as their covering area, and that the routing order
derived is:

D > C > F > B > E > G > A

We now explain how to construct the dependency graph, and

exploit the available concurrency without causing conflict in
routing resource or order. This approach is mainly divided into

the following 3 steps.
Tile Coloring: In this step, each tile identifies its occupancy

by iterating through the ordered subnets. The first subnet

region that covers the tile is considered as its occupant. Using
the example from Figure 4, the results of the colored tiles are

shown in Figure 5(a). We can observe that most of the map
is colored by subnet D because it has the highest priority in

routing order. Given this colormap, each subnet can visualize

the other subnets that it is overlapping with, hence determining
its dominant subnets.

Finding Available Concurrency: With the help of the
colormap, we can easily find subnets that can be routed by

(a) Colored Tiles (b) Dependency Graph

Fig. 6: Results after the 2nd iteration (a) After D and A are routed,
nets C, B, F and G can be routed together because they have no dependencies
(b) More detailed dependencies are revealed in the graph.

checking if it occupies all of its routing regions. If not, then

there is a dependency on other subnets and it must wait until
the dependency is resolved. In Figure 5(a), subnets A and

D occupy all of their routing regions. Hence, they can be

scheduled together.

Now we introduce the concept of dependency level. This

metric is used to determine the urgency of routing certain
subnets. We score the dependency level as the number of

routing regions that one subnet invades. For instance, in Figure
5(a) subnet D scores 5 because it invades the area of 5 subnets:

B, C, E, F , and G.

From Figure 5(b) we can make an interesting observation
on the dependencies among all subnets. Subnets B, C, E,

F , and G are dependent on subnet D but we cannot identify
the dependencies between them. The algorithm intentionally

leaves these detailed dependencies for future computation,

so as to reduce complexity while extracting the available
concurrency in a timely manner.

Tile Recoloring: In this step, the algorithm uncovers de-
tailed dependencies by reconstructing the colormap. After the

scheduled subnets are routed, the colormap must be recon-

structed to resolve previous dependencies. Figure 6(a) shows
the new colormap when subnets A and D are already routed.

Recoloring only needs to consider subnets that were dominated

by A and D. In this case, they are {C, F, B, E, G} for D’s
region, and ∅ for A.

The dependency graph is updated using the new map. Figure
6(b) shows the new graph that reveals a new dependency

between subnets B, E, C, and F . Similar to the previous

iteration, the dependency graph indicates subnets B, C, F ,
and G can be scheduled once subnet D has finished, while E
can only be scheduled after B, C, and F are completed.

C. Implementation and Optimization

The above three steps are recursively applied until all

dependencies are resolved. The scheduler thread and the

global router threads execute in parallel with a producer-

consumer relationship. The scheduler keeps constructing the

dependency graph with the given task queue, and producing

concurrent nets to the router threads. The routers consume
these nets simultaneously with different priorities indicated

by the dependency levels, and return the completed nets to
release more concurrent nets.

The efficiency of the scheduler algorithm affects the avail-

able computational throughput for routing. The complexity
of this algorithm increases as the region size and net count
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increases. In practice, we reduce the problem size using

the identified congestion region (Section VI-C). Instead of

exploring concurrency on the entire routing map, the search
area is restricted to only the congestion regions, hence easing

the computation load of tile coloring.
In addition, a task window is used to restrict the number of

nets being examined for concurrency in each iteration. In some

cases, congestion regions contain a large number of nets. The
task window can effectively limit the search space and speed-

up the dependency tree construction.

VI. IMPLEMENTATION

In this Section, we will discuss details of our GPU-CPU
router implementation. We focus on several key issues such

as data representation in the GPU (VI-A), efficient search

techniques in the GPU (VI-B), directional congested region
identification algorithm (VI-C), our bounding box expansion

method (VI-D), and distribution of nets among CPU and GPU

threads (VI-E).

A. GPU Data Structures

Routing algorithm requires efficient data structures for graph
representation and traversal. Unlike allocating user-defined

data structures in the system memory, the GPU offers much

less flexibility in dynamic device memory allocation. Creating
an efficient data structure on the GPU that is suitable for

routing is a challenging task. We will explain how we took

advantage of inherent technological features of a CUDA-
enabled GPU to optimize our data structures for routing.

We store the vertices topology and edge cost data in the
GPU texture memory. This memory is optimized for read-

only data in the global memory. Fetching from cached texture

memory provides high bandwidth on memory space with good
spatial locality (i.e. if a cell is visited, then its neighbors

are also traversed). Hence, we bind the vertices and edge

costs array with 3DTexture and 1DTexture memories,
respectively. Each cell in the vertices in 3DTexture points to

six different adjacent cells: -X, -Y, -Z, +X, +Y, +Z.

Significant performance benefit is seen using 3D texture fetch.
All costs of traversing tiles are arranged in 2D arrays.

We store these data on the local shared memory in each
thread block rather than on the global device memory. This

arrangement has a much higher access efficiency, but comes at
the cost of generality. Due to the size limitation of the shared

memory on a GPU (48 KB on Fermi), the number of tiles

that can be traversed by each thread block is constrained to
about 2500. Fortunately, this size is reasonable for the GRP

in most cases. According to our observation, more than 99%

of all 2-pin nets can be fitted within this area.

B. Pathfinding Implementation in GPU

The GPU architecture has shown great potential in accel-

erating performance of data-intensive computations. For an
application to harness the power of the GPU, it must obey

the SIMD model where a specific set of operations are applied

repeatedly to a large chunk of data. Unfortunately, most of the
path finding algorithms used in CPU routers are optimized for

sequential execution and are not amenable to parallelization. In

addition, CPU-based maze routing algorithms, i.e. A* search,
Dijkstra’s algorithm, use dynamic data structures such as heap
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Fig. 7: Pathfinding in a GPU We propagate from the source node.
The breadth-first search fills up the entire search region, and continues until all
frontiers are exhausted. Then we back trace from the target node to find the
shorted weighted path.

to keep track of all traversing paths. These data structures

are too complex for the GPU architecture to maintain. For

these reasons, most CPU-based maze routing algorithms are
not suitable for the GPU architecture.

Algorithm 1 GPU BFS Algorithm Kernel

1: tid←getThreadID
2: if Frontier[tid] then
3: Frontier[tid]←false
4: for all neighbors nid of tid do
5: Edge← V ertex(tid, nid)
6: if Edge exists then
7: AddedCost← T ileCost[tid]+EdgeCost[Edge]
8: if AddedCost < TempT ileCost[nid] then
9: TempT ileCost[nid]← AddedCost

10: end if
11: end if
12: end for
13: end if
14: SYNCHRONIZE THREADS()
15: if T ileCost[tid] > tempT ileCost[tid] then
16: T ileCost[tid]← tempT ileCost[tid]
17: Frontier[tid]← true
18: DONE← false
19: end if
20: tempT ileCost[tid]← T ileCost[tid]

Our GPU router uses parallel breadth-first search (BFS)

algorithm to find weighted shortest paths. Like other BFS

algorithms for GPUs [12], [19], our GPU-BFS exploits paral-
lelism by simultaneously exploring vertices at the same depth,

which are defined as frontiers. In each iteration, all frontiers

add their current costs to the costs of edges that connect to
the neighboring tiles. If the sum results in a lower cost on a

neighboring tile, then this tile is activated as a new frontier.
The previous frontier is then deactivated. The search stops

when the frontiers are all exhausted, hence guarantees all

possible paths within the search region are traversed.
Our algorithm is fundamentally different from the previ-

ously proposed BFS algorithms for GPUs [12], [19], since a)
our algorithm tackles the weighted shortest path problem; b)

we route an individual 2-pin net within each thread block.

Therefore, we attain performance boost by routing large
amounts of nets concurrently.
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Term Description

Frontier Boolean list that marks the frontier
tiles in the current iteration.

Contains source vertex initially.

EdgeCost Array that stores cost of all edges.
V ertex Function that returns the Edge

between two Vertices.

AddedCost Intermediate variable to store the
new tile cost.

TempT ileCost Array that stores cost of traversing
tiles. Initialized as Inf.

T ileCost Array that stores minimum cost of

traversed tiles. Initialized as Inf.
DONE Boolean indicating all frontiers are

explored.

TABLE I: BFS Notations

Details of our parallel BFS are presented in Algorithm 1,

with the explanation of terms in Table I. Figure 7 shows an

illustrative example for this work.
In the first part of the kernel, each thread checks its entry in

the frontier array Frontier. It updates the cost of its neighbors

by adding its own cost and the edge cost. Each thread also
removes its vertex from Frontier and adds the new cost to

the traversing tiles in tempT ileCost. Here all threads must

synchronize to remove read/write inconsistencies in the shared
memory. The second part of the kernel copies the contents

from tempT ileCost to T ileCost if a lower cost is found, and

marks these tiles as new paths in the Frontier. The process
is repeated until all frontiers are explored. The path is then

generated using a back trace algorithm in the GPU. The back

tracing (not shown) essentially reverses the searching order of
the above algorithm.

C. Congested Region Identification (CRI)

The first step of identifying a congested region is to rec-

ognize the most congested tile during routing. Subsequently,
a region is marked as congested by expanding around the

congested tile.

Term Description

ri,j;k,l rectangle with bottom left

coordinates (i, j) and top right

(k, l)
Avei(r) average congestion value inside the

expanded rectangle r in the

direction of i side(s)
LB(level) returns the lower bound value for a

particular congestion level

expand4sides(r) expands region r in all directions
expand3sides(r) expands 3 sides of region r

towards the maximum congestion
expand2sides(r) expands 2 sides of region r

towards the maximum congestion

expand1sides(r) expands 1 side of region r towards
the maximum congestion

TABLE II: Algorithm Notations

In order to accurately identify the congested region, we use
a directional expansion algorithm to adaptively expand to the

region in the directions that result in the highest congestion.

Figure 8 best explains this situation. We begin by taking the

most congested tiles (red cells in the figure) and adaptively
expand until the average congestion for the region is below a

certain threshold. We divide the congestion value into several

congestion levels, much like NTHU-Route [2]. The number
of congestion levels we seek to model will dictate the size

of each region. In our example, we have 4 congestion levels.

After these regions are found, we route the nets inside them in
parallel based on Section IV. Pertinent details are presented in

Algorithm 2, Table II lists the notations and their descriptions.

Algorithm 2 Directional Expansion Algorithm

r = max(bij)
∀ 0 ≤ i ≤ X ; 0 ≤ j ≤ Y

1: for level = 1 to 4 do
2: while Ave4(r) > LB(level) do
3: expand4sides(r)
4: end while
5: while Ave3(r) > LB(level) do
6: expand3sides(r)
7: end while
8: while Ave2(r) > LB(level) do
9: expand2sides(r)

10: end while
11: while Ave1(r) > LB(level) do
12: expand1sides(r)
13: end while
14: end for

Fig. 8: Directional expansion algorithm adaptively expands in the
directions with the highest congestion.

D. Bounding Box Expansion

Bounding box is widely applied in global routers. This

technique constrains the searching region of 2-pin nets within
a rectangle, therefore reduces the space complexity of maze

routing, and decreases the solution wirelength.

Typically, the size of the bounding box is expanded as the
RRR iteration proceeds. As the remaining overflow decreases,

we can relax the constraint of the bounding box and allow the
maze router to obtain overflow free route at the cost of longer

wirelength. But as the constraint of bounding box relaxes

to more than 10 times as large as the original, we stop the
expansion again to avoid excessively long routes.

We choose an adaptive method, rather than a fixed parameter

function, to expand the bounding box. The search area con-
straint is relaxed accordingly to the percentage of remaining
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Fig. 10: Speedup of GPU BFS over CPU A*Search.

overflow. We keep the size of the bounding box unchanged

until 99% of all overflow is resolved. This phase passes very
fast since the searching areas are small. Then we linearly

increase the size of bounding box as RRR iteration proceeds,
until its size reaches the upper limit.

E. Workload Distribution between GPU and CPU

The scheduler dispatches workloads among the CPUs and

GPU for optimum computational throughput. Typically, the
CPU routers achieve a single solution with lower latency

than the GPU router, but the latter can achieve much higher

throughput by routing multiple nets in a single kernel call.
Urgent nets, which release several subsequent nets to be routed

concurrently, are scheduled on the CPUs. In addition, nets with

large bounding boxes are also routed in the CPU due to the
shared memory limits on the GPU.

VII. RESULTS

The global router is implemented in C/C++ on an Intel

Quad-core 2.4GHz machine with 4GB of RAM. The GPU
in this study is an Nvidia Geforce GTX 470, featuring the

Fermi architecture. The GPU code is compiled with the CUDA

Toolkit 4.0RC2. We use ISPD 2007 and ISPD 2008 benchmark
suites in the experiments shown below.

A. GPU and CPU router

We first compare the routing throughput between our GPU

and CPU routers. In this experiment, we schedule the same
nets to the GPU router and a single CPU router, and record

the average wall clock time for both routers. To make it a fair

comparison, the process includes routing, back tracing, and

data transfers between the GPU and the system memory.

The results are shown in Figure 9 and Figure 10. The
runtime comparison in Figure 9 shows a linear increase of

CPU router runtime with the growing number of routing nets.

Interestingly, the GPU runtime slope is much flatter than the
CPU. Consequently, CPU router has a much shorter latency

when routing individual nets, while the GPU can deliver a

much higher bandwidth when scheduled with multiple nets.

The relative speedup between the GPU and CPU routers is
illustrated in Figure 10. We can observe about 5X speedup

when both the routers are scheduled with 30 nets. One should

notice that the speedup keeps growing with more scheduled
nets. We have observed a speedup of 73X if both routers are

scheduled with 1000 nets (not shown).

B. Comparison with NTHU-Route 2.0

We now compare our parallel router with the ISPD 2008
routing contest winner NTHU-Route 2.0. The experiments are

run on the same hardware platform. The results of the overflow

free benchmarks are listed in Table III.

Our parallel router generates high quality routing solutions
with wirelength within an average of 1.1% increase to that

reported by NTHU-Route 2.0. Noticeably, the additional GPU

router introduces negligible overhead in the resultant wire-
length. In the runtime comparison, the parallel router utilizing

4 CPU threads achieves an average speedup of 3.34X com-

pared to NTHU-Route 2.0, while nearly 4X (3.96X) average
speedup is achieved with the additional GPU router. These

results prove the effectiveness of our concurrency model in
solving GRP with NLP on a high throughput hardware, while

the concurrency has little affect in the solution quality.

Although the GPU shows great potential in offering high

throughput in routing nets (Figure 10), our observed speedup
is somewhat less. The GPU heavily depends on the Scheduler

to uncover independent nets that can be routed. In our exper-

iments, we have rarely observed more than 30 concurrently
routable nets. In some situations, the insufficient amount of

independent nets can even cause the GPU router to wait in

idle, or to be configured with suboptimal number of nets. Nev-
ertheless, our proposed algorithm on dynamically detecting

data level parallelism in routing lays the foundation for future

research to exploit GPUs for high speed routing.

VIII. CONCLUSION

As technology continues to scale, computational complexity
of many EDA algorithms is growing rapidly. Exploiting the

computational bandwidth of high throughput platforms like the

GPU is a prominent direction for future EDA. In this paper,
we present a hybrid GPU-CPU high throughput computing

environment as a scalable alternative to the traditional CPU

based router. We show that the traditional GRP needs to be
revamped for exploiting the new computing environment. The

key to our method is using Net Level Concurrency guided by a

Scheduler. The Scheduler analyzes data dependencies between
nets and dynamically generates concurrent routing tasks for the

computing environment. Detailed simulation results show an

average of 4X speedup over NTHU-Route 2.0 with negligible
loss in solution quality. Our framework is a concrete step
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Parallel Router(4-core) Parallel Router(4-core+GPU) NTHU 2.0 Speedup

WLa runtimeb WLa runtimeb WLa runtimeb 4-core 4-core+GPU

adaptec1 5.43E6 2.90 5.44E6 2.07 5.34E6 9.95 3.43 4.81
adaptec2 5.29E6 0.70 5.30E6 0.63 5.23E6 2.1 3.00 3.33

adaptec3 1.31E7 3.53 1.31E7 3.05 1.31E7 10.86 3.08 3.56

adaptec4 1.24E7 0.95 1.24E7 0.65 1.22E7 2.5 2.63 3.85
adaptec5 1.55E7 9.98 1.55E7 8.12 1.55E7 21.9 2.19 2.70

newblue1 4.70E6 2.87 4.70E6 1.88 4.65E6 6.2 2.16 3.30

newblue2 7.79E6 0.28 7.81E6 0.27 7.57E6 1.1 3.93 4.07
newblue5 2.38E7 5.38 2.38E7 4.42 2.32E7 19.1 3.55 4.32

newblue6 1.80E7 4.12 1.80E7 3.78 1.77E7 17.5 4.25 4.63
bigblue1 5.63E6 3.10 5.63E6 2.86 5.59E6 13.1 4.22 4.58

bigblue2 9.10E6 2.31 9.05E6 2.09 9.06E6 8.4 3.64 4.02

bigblue3 1.30E7 1.09 1.30E7 1.01 1.31E7 4.4 4.04 4.37
a. wirelength in terms of edges consumed
b. expressed in minutes

TABLE III: Wirelength and runtime comparison with NTHU-Route 2.0.

towards developing next generation global routers geared for

high throughput compute architectures.
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