
Efficiently Tolerating Timing Violations in Pipelined
Microprocessors

Koushik Chakraborty Brennan Cozzens Sanghamitra Roy Dean M. Ancajas

USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University
{koushik.chakraborty, sanghamitra.roy}@usu.edu

ABSTRACT

Early prediction of an upcoming timing violation presents a tremen-
dous opportunity to mask the performance overhead of tolerating
these faults. In this paper, we explore several techniques for opti-
mizing instruction scheduling in an Out-of-Order pipeline, exploit-
ing this new perspective in robust system design. Compared to
recently proposed stall based techniques for tolerating predictable
timing violations, we demonstrate a massive reduction in perfor-
mance overhead, while supporting correct execution in faulty envi-
ronments (64–97% across different benchmarks).

Categories and Subject Descriptors

B.8.1 [Hardware]: Reliability, Testing and Fault Tolerance

General Terms

Reliability

Keywords

Timing Faults, Path Sensitization, Instruction Scheduling.

1. INTRODUCTION
Growing unreliability in electronic systems is reshaping the de-

sign approaches of the computing world. In this domain, tim-
ing violations—an artifact of rapid technology scaling—embody
a central reliability challenge [1, 2]. Guided by a combined ef-
fect of static (process variation and wearout) and temporal (ther-
mal, voltage or utilization) variation, timing violations can occur
sporadically [1, 2]. Consequently, runtime error detection and cor-
rection techniques have been a topic of major research in recent
years [3–7]. Existing works in this area either provide a very high
fault coverage at the expense of a large performance overhead,
or provide a poor fault coverage with a low performance penalty
[3, 6–11].

In this paper, we demonstrate that it is possible to approach the
performance of fault-free execution, while tolerating timing errors
in an Out-of-Order (OoO) microprocessor pipeline. We establish a
foundation for low-overhead timing-error tolerance using a viola-
tion aware instruction scheduling framework. This unique frame-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2013, May 29–June 07, Austin, TX, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

work is based on the recently observed predictability of timing er-
rors from specific instructions causing them [12, 13]. We can use
the instruction Program Counter (PC), a unique instruction iden-
tifier, for predicting an upcoming timing violation, several clock
cycles in advance. While tolerating an unexpected timing error en-
tails a large performance overhead in pipelined architectures [3],
we observe that scheduling an instruction with a predictable timing
error becomes logically equivalent to a variable latency operation.

To exploit this property, our proposed violation aware instruction
scheduling framework ensures two fundamental principles: (a) the
faulty instruction occupies one additional cycle in the same pipe
stage, and no new input is fed in the resources occupied by that
instruction during this time; and (b) the dependent instructions be-
hind the faulty instruction are held back by one extra cycle. Our
proposed techniques can thus mask the penalty of timing viola-
tions from the system performance by confining the error overhead
to the faulty instruction and its dependents only. Our proposed
technique avoids stalling the whole pipeline as was done in recent
works [12, 13], thereby marginalizing the system level overhead of
tolerating timing violations.

Enabled by our violation aware scheduling techniques, micro-
processors can operate at a tighter frequency, where predictable er-
rors frequently occur and are tolerated with minimal performance
loss. The main contributions of our paper are outlined next.

• We propose a series of low overhead micro-architectural en-
hancements coupled with instruction scheduling techniques
to drastically limit the performance overhead of predictable
timing faults (Sections 2, 3).

• Using a rigorous circuit-architectural simulation (Sections 4
and 5), combining synthesized hardware with full system
simulation, we demonstrate dramatic reduction in the perfor-
mance overhead from faulty execution (64–97%) compared
to stall based schemes [12, 13]. Our proposed schemes have
negligible power/area overhead giving an energy-efficient al-
ternative for robust pipelines (Section S3).

• We study the locality of sensitized paths from multiple dy-
namic instances of a given instruction in several micropro-
cessor structural blocks. Our analysis, employing the Fab-
scalar infrastructure [14], demonstrates the predictability of
timing faults in these components (Section S1).

2. ROBUST PIPELINE DESIGN OVERVIEW
In this section, we present an overview of our proposed timing

error tolerant Out-of-Order (OoO) pipelined microprocessor. The
goal of our proposed techniques is to approach the performance of
fault-free execution while tolerating timing errors. We outline an
overview of our design in Section 2.1 and summarize how timing
errors are handled in various stages of the pipeline (Section 2.2).

Figure 1: An Overview of our proposed techniques showing key
enhancements. The decode stage is augmented with a Timing
Error Predictor (TEP). This predictor information is propagated
in subsequent pipe stages. The Issue stage is enhanced for
violation tolerant scheduling.

2.1 Pipeline Overview
Figure 1 shows the overview of our pipelined micro-architecture.

An OoO processor typically consists of a front end spanning from
Fetch to Dispatch, where instructions proceed in-order, the OoO
core engine spanning from Issue to Writeback, and an in-order Re-

tire stage. An individual stage in this pipeline may also span across
multiple clock cycles [14].

We augment this pipeline with several micro-architectural en-
hancements. The decode stage is enhanced with a Timing Error
Predictor (TEP), which dynamically learns and predicts timing er-
rors in the pipeline from a decoded instruction PC. The TEP is
accessed in parallel to decode avoiding any impact on the crit-
ical path. The TEP prediction is subsequently propagated with
the instruction meta-data as it traverses through various pipeline
stages. Subsequently, the issue stage recognizes an instruction with
a predicted timing error and activates violation aware instruction
scheduling. For this purpose, the issue stage micro-architecture is
augmented with a Violation Tolerant Enhancement (VTE) detailed
in Section 3. If an instruction meta-data does not indicate a timing
violation, instructions proceed normally. We next discuss our TEP
design, and then briefly outline how timing error mis-predictions
are handled.

2.1.1 Timing Error Predictor

Our TEP combines features from the Most Recent Entry (MRE)
predictor proposed by Xin et al. with the Timing Violation Pre-
dictor (TVP) proposed by Roy et al. [12, 13]. Figure 1 shows our
TEP design. Each entry in the predictor table contains a 2 byte tag
obtained from the PC. The entries in the table are indexed using a
combination of bits in the PC and the recent branch outcomes. A
2-bit saturating counter in each entry keeps track of the potential
of a timing error in the system. A non-zero value in the saturating
counter indicates a possible timing violation. We also keep track
of the faulty pipe stage associated with an error causing instruc-
tion. The prediction also considers favorable conditions for timing
errors through the use of thermal and voltage sensors.

2.1.2 Handling Mis-prediction

If an instruction incurs a timing violation without early predic-
tion, an error recovery is triggered using instruction replay, similar
to Razor [15]. This recovery corrects a fault that is not handled by
our violation aware scheduling framework. Instruction replays are
rare, but incur a large performance overhead.

2.2 Tolerating Timing Violations in Specific Pipe
Stages

Timing errors may happen in the in-order engine or the OoO
engine of the processor. Our experiments, as well as, recent works
have indicated that the likelihood of timing errors is significantly
more in the OoO engine [16]. Therefore, our proposed techniques
are primarily focused on efficiently tolerating timing errors in the
OoO core. However, for the sake of completeness, we outline how
we handle errors in the in-order engine next.
In-order Engine: The violation aware scheduling framework is
not applicable to the in-order part of the pipeline. For the rename,
dispatch and retire stages, we use the predicted violation from the
TEP to enable a stall signal at the appropriate stage. This stall
signal allows the faulty pipe stage to complete in two clock cy-
cles, while the input to all other stages are recirculated to avoid
forward flow of instructions during that cycle. The stall signal can
be enabled using existing circuitry in modern microprocessors with
minimal modification. The TEP cannot be used to mitigate tim-
ing violations in the fetch and decode stages of the pipeline. Any
violations in these two stages are mitigated using instruction re-
play with our error recovery circuitry discussed in Section 2.1.2.
Such replays are however rare, as the fetch and decode stages have
substantially lower fluctuations of temperature and voltage making
timing violations rare [17].
OoO Engine: We use our proposed timing violation aware instruc-
tion scheduling framework for tolerating timing errors in the OoO
engine, discussed next.

.

3. VIOLATION AWARE SCHEDULING
In this section, we describe our violation tolerant enhancement

(VTE) and scheduling algorithms in a pipelined OoO microproces-
sor. Our goal is to efficiently tolerate timing violations in the OoO
engine shown in Figure 1, radically improving upon stall based
techniques [12, 13].

3.1 Violation Aware Scheduler Overview
From an instruction scheduling perspective, a pipe stage execu-

tion with a timing violation becomes equivalent to a variable la-
tency operation when that violation can be predicted early. Conse-
quently, we can suitably alter the instruction scheduling in a manner
such that: (a) the faulty instruction occupies one additional cycle
in the same pipe stage, and no new input is fed in the resources
occupied by that instruction during this time; and (b) the depen-
dent instructions behind the faulty instruction are held back by one
extra cycle. At its core, these scheduling features require modi-
fication to the pipe resource management and the communication
of dependency between two instructions (detailed in Section 3.2).
Eventual impact of these corrective measures on the processor per-
formance is determined by the existing architectural slack of the
faulty instruction [18] (e.g., increased latency on some instructions
may have negligible impact on the system performance).

3.2 Violation Tolerant Enhancements
To ensure correct execution with timing violations, we need to

make micro-architectural modifications in the scheduler logic in

the issue stage. Other stages within the out-of-order engine require
supporting modifications. First, we describe the VTE in the Issue
stage. Then we describe how predictable timing violations are tol-
erated in all stages within the OoO engine (Section 3.3). Three ma-
jor aspects of the VTE are: (a) Issue Queue Entry; (b) Tag Broad-
cast Logic and (c) Issue Slot Management.

3.2.1 Issue Queue Alteration

The issue queue entries are augmented to include a single-bit that
indicates the fault prediction of an instruction. Furthermore, an-
other field indicates the faulty pipe stage, so that the pipe stage logic
is modified when that instruction enters the faulty stage. Combined
together, a 4-bit field is sufficient to encode the error prediction
information for each instruction.

3.2.2 Tag Broadcast Logic

When an instruction is scheduled, engaging the Register Read,
Execute and Memory stages, the scheduler logic keeps track of its
expected completion time. Subsequently, in the cycle the instruc-
tion completes, the instruction tag is broadcast to the issue queue.
Waiting instructions then perform a tag match with this result tag, to
evaluate if their operands are ready. Based on whether the comple-
tion is triggered from the Memory stage (load instructions) or Ex-
ecute stage (ALU instructions), we use a countdown to keep track
of its completion time. In case of a faulty instruction, we increment
the completion counter, based on its expected delay. Thus, the tag
broadcast is delayed by one cycle.

3.2.3 Issue Slot Management

In each cycle, the issue stage in the OoO engine prepares a packet
consisting of several instructions (equal to the pipeline width W),
which is then propagated through the later stages of the pipeline.
We denote the position of a particular instruction in this packet as
an issue slot in our description.

When a faulty instruction is issued, the issue slot occupied by
that instruction must be managed carefully. This is necessary to
avoid sending a new instruction in the same slot to the faulty stage
before the faulty instruction has sufficient time to complete its com-
putation. To accomplish this task, we keep track of the issue slot
occupied by a faulty instruction. In the subsequent cycle, we freeze
the slot to disallow issuing another instruction behind the faulty in-
struction. We next discuss, how each pipe stage in the OoO engine
tolerates timing violations.

3.3 Tolerating Timing Errors in the OoO Pipe
Stages

3.3.1 Issue

Issue can have multiple pipe stages. However, the wakeup/select
stage inside the issue is particularly prone to timing errors due to
the use of content addressable memory (CAM) logic in the wakeup.
In our experiments, also corroborated by others [16], we find that
almost all timing errors happen in the wakeup/select stage. The is-
sue stage is responsible for handling timing errors in the other OoO
pipe stages. However, a timing error in the issue itself can cause
a pipeline deadlock when back-end errors are relying on correct
operation of the issue.

To avoid such a pipeline deadlock, we adopt a low-complexity
technique that trades off marginal performance loss for complexity
reduction. After an instruction with a predictable timing error in the
issue is inserted in the issue queue from the dispatch stage, we track
the functional unit or memory port where the faulty instruction will
be scheduled. Once this faulty instruction is scheduled, we freeze

the corresponding issue slot for the functional unit or memory port
in the subsequent cycle. Consequently, when this faulty instruction
broadcasts its tag, the input to the wakeup select lane will remain
steady for two cycles, thereby providing sufficient time to complete
the logic computation.

3.3.2 Register Read

When an instruction has a predictable timing error in the regis-
ter read stage, the issue queue blocks the respective register read
port, where the faulty instruction is assigned, for one additional cy-
cle. This blocking allows the instruction to complete register read
in two cycles, and avoids using the read port in the next cycle after
the faulty instruction enters the register read stage. The schedul-
ing cycle for the execute/memory stage for this faulty instruction is
adjusted to handle this additional delay from the register read stage.

3.3.3 Execute

The execute stage is composed of various functional units. The
key to functional unit management is to ensure that the instructions

are issued to functional units when they are ready to process new

instructions. To keep track of this information, we use a Functional

Unit State Register (FUSR). Each bit in the FUSR keeps track of
one functional unit, and indicates if a new instruction can be issued
to that unit in the next cycle. We now discuss two major classes of
functional units based on their completion delay: single cycle and
multi-cycle.
Single-Cycle Latency: Functional units with a single cycle latency
can process new instructions in every cycle. However, when a
faulty instruction is scheduled, its FUSR bit is turned off for one
cycle to disallow issuing a new instruction in the next cycle.
Multi-cycle Latency: A multi-cycle functional unit may or may
not be pipelined. In the case it is not pipelined, the FUSR is ad-
justed to indicate the busy state for one extra cycle beyond its ex-
pected completion time. A fully pipelined functional unit can pro-
cess new instructions every cycle in the absence of timing errors.
However, a timing error can happen in any of the internal pipeline
stages. To effectively handle these multi-cycle pipelined units, we
temporarily avoid issuing new instructions behind a faulty one. We
resume issuing new instructions to that unit only after the faulty
instruction completes. This approach is agnostic of the exact er-
ror pipe stage within the multi-cycle execution unit, thereby saving
design complexity at the cost of a marginal performance loss.

3.3.4 Memory

Similar to the issue, the memory stage is also susceptible to er-
rors due to the presence of CAM logic in the load-store queue. In
particular, when the CAM search results in several tag matches,
we observe additional delay in this stage, potentially causing tim-
ing errors. When the issue queue schedules a predictable faulty
instruction to the memory, it estimates the cycle when the CAM
match will be performed. Based on this estimation, the issue queue
avoids issuing a load/store instruction behind the faulty one to pre-
vent another CAM match in the cycle right after the faulty instruc-
tion. Consequently, the faulty instruction can continue to do the
CAM match for two cycles. The writeback stage of this faulty in-
struction is delayed in the memory stage by one cycle to preserve
correct execution.

3.3.5 Writeback

The writeback stage is relatively less susceptible to errors, com-
pared to other stages discussed above. However, to achieve fault
coverage in the entire OoO engine, we propose some enhancements
to the Writeback stage. Every cycle, this stage receives W pack-

Figure 2: An example showing the scheduler logic modification.

ets, each of which consist of information necessary to complete the
writeback of an in-flight instruction (W is the issue width). If one of
the instructions has a potential timing error in the writeback, then
its corresponding input slot is frozen by the issue queue in the next
cycle, allowing the input to recirculate.

3.4 An Illustrative Example
Figure 2 shows an operational example of scheduling instruc-

tions around a faulty instruction. We assume a functional unit with
one-cycle completion time, so that new instructions can be sched-
uled in every cycle, while scheduled instructions complete in the
same cycle. The instruction I2 is predicted to have a fault in the
execution unit. This instruction is selected in cycle 2, to be exe-
cuted on the functional unit on cycle 4. However, as it is faulty, it
takes one additional cycle. Moreover, as no new instruction can be
scheduled on cycle 5 on that functional unit, the FUSR is marked
0 at the end of cycle 2 to avoid selecting a new instruction for that
functional unit in cycle 3 (representing issue slot freezing discussed
in Section 3.2.3). The tag broadcast logic is delayed by one cycle,
so that dependent instruction I3 is held back for one cycle.

3.5 Violation Aware Scheduling Algorithms
Beyond ensuring correct execution in the presence of predictable

timing violations, the next design issue pertains the selection pri-
ority of instructions with operands ready. We explore three differ-
ent algorithms for instruction scheduling, all of which confine the
penalty to a faulty instruction and its dependents, and aim to mini-
mize the system level performance overhead of a timing fault:

• Age based selection (ABS)

• Faulty First Selection (FFS)

• Criticality Driven Selection (CDS)

The age based policy, ABS, uses a timestamp—implemented us-
ing a 6-bit module-64 counter—to select instructions to schedule,
among those that are operand ready. The faulty first policy, FFS,
attempts to schedule instructions with faults early, so as to release
their dependent instructions sooner. The criticality driven policy
dynamically estimates the criticality of a predictable faulty instruc-
tion (detailed in Section 3.5.2), and attempts to eagerly select those
instructions that have a higher criticality. We next outline our pro-
posed issue queue modifications to implement these policies, and
subsequently discuss our approach for dynamic criticality estima-
tion.

3.5.1 Selection Logic Enhancement (SLE)

Figure 3 shows the implementation of the SLE for the proposed
priority schemes discussed above. Each issue queue entry keeps
track of three major aspects necessary for selection: (i) operand
ready; (ii) timestamp; and (iii) a 4-bit field indicating the fault pre-
diction (Section 3.2.1) and criticality of an instruction. The faulty
bit is also used to manage functional units and the tag broadcast
logic, as discussed in Section 3.2. All instructions with operand
ready, bids for selection (Figure 3). The ABS policy sets the grant

Figure 3: SLE and CDL Implementation.

line for the instructions with the lowest timestamp (oldest instruc-
tions). The FFS policy sets the grant line for instructions with faulty
bit set. When none of the instructions are faulty, then it uses the
timestamp to select instructions (similar to ABS). The CDS policy
eagerly selects faulty instructions that are expected to be critical.
Again, similar to FFS, if no such instructions (faulty and critical)
exist, then it uses the timestamp.

3.5.2 Criticality Detection Logic (CDL)

Precisely estimating the criticality of an instruction in hardware
is challenging, as the hardware has limited information about the
dynamic data flow of a program [18]. Instead, we use a low-complexity
technique to estimate the instruction criticality by tracking the num-
ber of dependent instructions behind a given instruction in the issue
queue. Figure 3 shows the implementation of our proposed scheme
in a reservation station. When an instruction broadcasts its result
tag, we track the number of tag matches in the reservation station.
These tag matches are fed to an encoder, and then compared with
a predefined Criticality Threshold (CT). This CT dictates the mini-
mum number of dependent instructions that must be present in the
issue queue to consider a given instruction to be critical. Once we
determine this instruction criticality, we store this information with
the timing error predictor (Section 2.1.1). In our experiments, we
find that a CT of 8 gives the best outcome.

4. METHODOLOGY
In this section, we describe our extensive circuit-architectural

methodology for performance tradeoff analysis of our proposed
techniques.

4.1 Circuit Implementation
We implement our proposed scheduling techniques within the

Fabscalar infrastructure [14]. For the purpose of this paper, we use
the Core-1 configuration, which represents an out-of-order pipeline
capable of fetching, issuing and committing 4 instructions each
cycle. The pipeline has single-cycle (e.g. simple ALU) as well
as multi-cycle (e.g. complex ALU) functional units. The mis-
prediction loop for this pipeline is 10 stages, spanning fetch to ex-

ecute. We synthesize our implementation with the Synopsys De-
sign Compiler using a 45nm FreePDK library. Energy results are
gathered by combining architectural usage information with power
characteristics from the synthesized hardware.

4.2 Architectural Simulation
We use full-system simulation built on top of WindRiver SIM-

ICS [19]. We use our own detailed timing model to enforce the tim-
ing characteristics of a 4-wide out-of-order microprocessor, identi-
cal to the Core-1 configuration mentioned above. The core uses a
two-level cache hierarchy where L1 (32KB 4-way split Instruction
and Data) has a single cycle latency, while the 16-way 8MB L2 and
the main memory are accessed in 25 and 240 cycles, respectively.
We use the TEP as our predictor design (Section 2.1.1). For both
fault-free execution and Error Padding scheme (discussed in Sec-
tion 5) [13], we use the age based instruction selection policy. We
use several SPEC CPU2006 benchmarks, and focus our architec-
tural simulation on representative phases extracted using the Sim-
Point toolset [20]. Each phase corresponds to 1 million committed
instructions.

4.3 Fault Simulation
To simulate timing faults, we embed gate delay information in

the architectural simulation. The effect of process variation and
aging on the circuit timing is obtained by our in-house statistical
timing tool that uses SPICE characterized gate delay distributions
[21]. To model process variation, we assume that the transistor
length, width and oxide thickness behave as Gaussian distributions
with ±20% deviation across the nominal values [1, 22].

For the purpose of this paper, we focus on timing violations in
the OoO engine of the processor, spanning from Issue to Write-

back. Together, these stages comprise the heart of the control and
datapath in a pipelined microprocessor, and also contain the timing
critical stages in the microprocessor [16].

Depending on the program input, different instructions incur dif-
ferent delays based on the delays in individual gates in the sen-
sitized paths. We alter the supply voltage to create two different
faulty environments: high fault rate (0.97V), and low fault rate
(1.04V). Faults are assumed to occur when the 95% confidence
interval of the stage delay exceeds the cycle time (µ + 2σ). The
baseline machines have zero fault rate when executing at 1.1V sup-
ply voltage. Most of the timing violations are accurately predicted
and tolerated with one of the comparative schemes. However, when
timing faults occur without early prediction, we initiate error recov-
ery using instruction replay, similar to Razor [3].

5. EXPERIMENTAL RESULTS
In this section, we present experimental results of our proposed

schemes for optimizing scheduling around predictably faulty in-
structions. Our goal is to study the power-performance overhead
incurred during faulty execution.
Comparative Schemes: We study the following schemes:

• Razor: This scheme fires an instruction replay for all errors
in the system [3].

• Error Padding (EP): This is our baseline scheme that intro-
duces stall cycles for predicted errors, similar to [12, 13].

• ABS, FFS, CDS: These are our proposed schemes for viola-
tion aware scheduling described in Section 3.5.

5.1 Fault Rates
Depending on specific paths sensitized during program execu-

tion, different benchmark programs exhibit different fault rates while

as
tar
bz
ip2 gc

c

go
bm
k

lib
qu
an
tummc

f

pe
rlb
en
ch

po
vra
y
sje
ng

sp
hin
x3
ton
to

xa
lan
cb
mk

AV
ER
AG
E

R
e
la
ti
v
e
 P
e
rf
o
rm
a
n
c
e
 O
v
e
rh
e
a
d

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ABS FFS CDS

Figure 4: Performance Overhead Comparison During Faulty
Execution at low fault rate (1.04V) normalized to EP [12,13].
(Lower is better.)

operating at the same supply voltage. In Table 1, we report the
average fault rates seen in the OoO engine, collectively, when op-
erating under 1.04V and 0.97V, respectively. We also report the
performance overhead over fault-free execution seen with Razor
[3] and EP schemes. Overheads are shown as a tuple, represent-
ing the percentage of performance and energy efficiency degra-
dation, respectively. Performance is estimated using Instruction

per cycle (IPC), while energy efficiency is estimated using energy-
delay product. Certain benchmarks like sjeng, with higher inher-
ent instruction level parallelism, show greater susceptibility to tim-
ing violations. On the other hand, benchmarks like libquantum,
with greater data stalls, show substantially lower performance im-
pact from occasional timing violations. As Razor has substantially
higher overhead than EP for performance and energy efficiency, we
provide all our subsequent results normalized to the EP scheme.

5.2 Performance Overhead Comparison
Figures 4 and 5 present the relative performance and ED (Energy-

Delay) overhead comparison of our proposed schemes, normal-
ized to the baseline Error Padding (EP) scheme during lower fault
rate. All of our schemes are remarkably effective in marginaliz-
ing the performance overhead during timing violations when com-
pared with the baseline. During a lower fault rate (VDD = 1.04V),
on an average our schemes reduce the performance overheads by
87% compared to Error Padding (Figure 4). Likewise, on an aver-
age, our schemes reduce the ED (Energy Delay) overhead by 82%
compared to EP (Figure 5). For example, in astar, ABS is able
to dramatically erase the performance under faulty environment by
97%, delivering performance similar to fault-free execution. ABS
also shows similar improvements in ED overhead. On the other
hand, in libquantum, CDS is particularly effective as it can elimi-
nate 86% of the timing violation penalty, compared to 64% in ABS.
Our low complexity criticality assessment is highly effective in the
particular data flow pattern in libquantum, thereby resulting in a
substantial performance advantage. Our schemes are also highly
effective during high fault rates (results in the higher fault rate (VDD

= 0.97V) are presented in Section S2).

6. RELATED WORK
Recent works in tackling timing faults in pipelined microproces-

sors can be broadly classified into three groups: reactive, proactive,
and predictive. Reactive techniques primarily focus on precise fault
detection. Once detected, they ensure correct execution through
costly instruction replay [3, 15]. Despite this large performance
overhead for error correction, these techniques are often necessary
to achieve full fault coverage. Proactive techniques aim to reduce
the correction overhead by taking corrective action just before the

Benchmark Fault-Free IPC VDD=0.97V VDD=1.04V

FR (%) Razor Overhead EP Overhead FR (%) Razor Overhead EP Overhead

astar 0.69 6.74 (31.2, 45.6) (5.17,6.45) 2.01 (10.2,14.6) (1.29,1.7)

bzip2 1.48 8.92 (43.2, 56.8) (12.35,16.5) 2.24 (17.4,25.6) (3.1,3.7)

gcc 1.34 8.43 (47.2, 61.3) (8.57,10.3) 1.5 (19.4,29.6) (2.14,2.6)

gobmk 1.68 8.64 (47.3, 53.3) (12.65,16.3) 2.16 (18.2,24.5) (3.16,3.95)

libquantum 0.51 10.54 (25.3, 32.5) (4.5,5.7) 2.1 (6.8, 10.2) (1.12, 1.5)

mcf 0.34 6.45 (30.1, 42.3) (1.96,2.8) 1.73 (9.5,12.6) (0.49, 0.85)

perlbench 1.31 7.21 (45.7, 54.7) (6.52,7.1) 1.8 (15.6,21.2) (1.63, 2.1)

povray 1.941 6.31 (51.2, 75.4) (7.58,9.1) 1.57 (24.5, 32.5) (1.89, 2.25)

sjeng 1.93 9.19 (58.6, 72.5) (15.19,17.8) 2.29 (23.5,29.8) (3.79, 4.83)

sphinx3 1.30 6.95 (52.5, 67.4) (5.45,5.9) 1.73 (17.2, 22.5) (1.36, 1.78)

tonto 1.41 5.59 (45.6, 65.7) (5.04,6.5) 1.39 (16.5, 21.4) (1.25, 2.6)

xalancbmk 0.51 7.95 (34.5, 45.2) (3.093.8) 1.99 (12.5, 15.6) (0.77, 1.02)

Table 1: Benchmark Fault Rates (FR), and fault tolerance overhead employing Razor [3] and Error Padding [12,13].

as
tar
bz
ip2 gc

c

go
bm
k

lib
qu
an
tummc

f

pe
rlb
en
ch

po
vra
y
sje
ng

sp
hin
x3
ton
to

xa
lan
cb
mk

AV
ER
AG
E

R
e
la
ti
v
e
 E
D
 O
v
e
rh
e
a
d

0

0.1

0.2

0.3

0.4

0.5
ABS FFS CDS

Figure 5: ED Overhead Comparison During Faulty Execution
at low fault rate (1.04V) normalized to EP. (Lower is better.)

fault occurrence: in the same clock cycle where timing faults are
about to happen [11]. Upcoming faults are anticipated using tim-
ing sensors. However, a lack of sufficient time limits the scope of
corrective techniques, and hurts their fault coverage [12]. Recent
work on predictive techniques aim to predict an upcoming timing
fault, several clock cycles in advance [12, 13]. However, neither
of these works exploit the immense potential of predicting timing
faults. In this work, we explore micro-architectural techniques to
radically marginalize the overhead from timing faults, and demon-
strate massive improvements over the existing techniques based on
early prediction.

7. CONCLUSION
Predicting timing violations offers a tremendous leverage in marginal-

izing the performance overhead of tolerating recurring timing vi-
olations. In this paper, we propose three techniques to schedule
instructions with predicted timing violations. Our goal is to con-
fine the performance impact of timing faults on the faulty instruc-
tions, while eliminating its impact on other independent instruc-
tions. Compared to recently proposed techniques to tolerate pre-
dictable timing violations, our proposed schemes dramatically re-
duce the performance overhead by 64–97% across different faulty
environments, while reducing the ED overhead by 58-96%.

Acknowledgments

This work was supported in part by National Science Foundation
grants CNS-1117425 and CAREER-1253024, and donation from
the Micron Foundation.

8. REFERENCES

[1] S. Sarangi, B. Greskamp and others,“Varius: A model of process variation and
resulting timing errors for microarchitects,” IEEE Transactions on

Semiconductor Manufacturing, vol. 21, no. 1, pp. 3 –13, 2008.

[2] S. Pan, Y. Hu, and X. Li, “Ivf: Characterizing the vulnerability of
microprocessor structures to intermittent faults,” in Proc. of DATE,
pp. 238–243, 2010.

[3] S. Das, C. Tokunaga and others,“Razorii: In situ error detection and correction
for pvt and ser tolerance,” J. of Solid-State Circ., vol. 44, pp. 32–48, jan. 2009.

[4] S. Das, D. Roberts and others,“A self-tuning dvs processor using delay-error
detection and correction,” Solid-State Circuits, IEEE Journal of, vol. 41,
pp. 792 – 804, april 2006.

[5] K. Bowman, J. Tschanz and others,“Circuit techniques for dynamic variation
tolerance,” in Proc. of DAC, pp. 4–7, 2009.

[6] A. B. Kahng, S. Kang and others,“Designing a processor from the ground up to
allow voltage/reliability tradeoffs,” in HPCA, pp. 1–11, 2010.

[7] A. B. Kahng, S. Kang and others,“Recovery-driven design: a power
minimization methodology for error-tolerant processor modules,” in Proc. of

DAC, pp. 825–830, 2010.

[8] B. Greskamp, L. Wan and others,“Blueshift: Designing processors for timing
speculation from the ground up,” in HPCA, pp. 213–224, 2009.

[9] A. Tiwari, S. R. Sarangi, and J. Torrellas, “Recycle: pipeline adaptation to
tolerate process variation,” in Proc. of ISCA, pp. 323–334, 2007.

[10] J. Long and S. O. Memik, “Automated design of self-adjusting pipelines,” in
Proc. of DAC, pp. 211–216, 2008.

[11] M. Ghasemazar and M. Pedram, “Minimizing the energy cost of throughput in
a linear pipeline by opportunistic time borrowing,” in Proc. of ICCAD,
pp. 155–160, 2008.

[12] S. Roy and K. Chakraborty, “Predicting timing violations through instruction
level path sensitization analysis,” in Proc. of DAC, pp. 1074–1081, 2012.

[13] J. Xin and R. Joseph, “Identifying and predicting timing-critical instructions to
boost timing speculation,” in Proc. of MICRO, pp. 128–139, 2011.

[14] N. K. Choudhary, S. V. Wadhavkar and others,“Fabscalar: composing
synthesizable rtl designs of arbitrary cores within a canonical superscalar
template,” in Proc. of ISCA, pp. 11–22, 2011.

[15] D. Ernst, N. S. Kim and others,“Razor: A low-power pipeline based on
circuit-level timing speculation,” in Proc. of MICRO, pp. 7–18, 2003.

[16] J. Sartori and R. Kumar, “Compiling for energy efficiency on timing speculative
processors,” in Proc. of DAC, pp. 1301–1308, 2012.

[17] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model
validation through thermal measurements,” in Proc. of ISCA, pp. 302–311,
2007.

[18] B. A. Fields, R. Bodík, and M. D. Hill, “Slack: Maximizing performance under
technological constraints,” in Proc. of ISCA, pp. 48–58, 2002.

[19] P. S. Magnusson, M. Christensson and others,“Simics: A full system simulation
platform,” IEEE Computer, vol. 35, pp. 50–58, Feb 2002.

[20] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to
find periodic behavior and simulation points in applications,” in PACT,
pp. 3–14, 2001.

[21] S. Kothawade, K. Chakraborty and others,“Analysis of intermittent timing fault
vulnerability,” Microelectronics Reliability, vol. 52, pp. 1515–1522, July 2012.

[22] W. Zhao, F. Liu and others,“Rigorous extraction of process variations for 65-nm
cmos design,” IEEE Transactions on Semiconductor Manufacturing, vol. 22,
no. 1, pp. 196 –203, 2009.

Supplemental Materials

S1. INSTRUCTION LEVEL PREDICTABIL-

ITY OF TIMING VIOLATIONS
Timing violation predictability, has been studied by two recent

works [12, 13]. In this section, we verify this intriguing prop-
erty using a more elaborate and detailed methodology. We next
present our cross-layer analysis combining information from the
application, architecture and circuit layers. Our goal is to show the
underlying causes of specific instructions causing repeated timing
violations—the primary reason behind timing violation predictabil-
ity. Subsequently, we identify the tremendous opportunity of toler-
ating a timing violation using violation aware instruction schedul-
ing techniques that hasn’t been exploited by prior works.

S1.1 Underlying Cause Behind Timing Viola-
tion Predictability

When a certain static instruction executes repeatedly, its many
dynamic instances sensitize strikingly similar logic paths in a given
circuit block. Consequently, there is a high commonality in the
critical paths sensitized by many dynamic instances of a static PC.
Hence, if a certain PC causes a timing violation in a circuit block,
future occurrences of that PC is highly likely to cause timing vi-
olations under identical temperature and voltage conditions. This
phenomenon helps us to use the instruction PC to predict an up-
coming timing violation in a pipe stage, several clock cycles early.

S1.2 Cross-Layer Methodology
Figure 6 presents an overview of our extensive cross-layer method-

ology. We use the Fabscalar system design environment that al-
lows us to create and verify superscalar microprocessor cores [14].
Using Fabscalar, we extract synthesizable RTL designs of a few
critical components of a microprocessor core (details in Section
S1.2.2). The Fabscalar environment helps us to combine architec-
tural simulation of real programs with gate level logic simulation
using the Cadence NC-Verilog functional verification tool. We sim-
ulate the execution of six SPEC2000 integer benchmarks on each
core component to obtain the inputs corresponding to specific in-
structions.

Figure 6: Cross-layer Methodology.

We study the timing violation predictability of instructions, each
identified by a unique Program Counter (PC). Along with each PC,
we collect its respective inputs for each benchmark. For each PC,
we also identify the preceding instruction PC that sets the internal
logic state of a microprocessor component. Finally, our in house

Module Issue Queue Select ALU AGEN Forward Check

Gates 189 4728 491 428

Logic Depth 33 46 43 15

Table 3: Details of Synthesized Processor Components.

IssueQSelect AGen ForwardCheck ALU

C
om

m
on

 S
en

si
tiz

ed
 P

at
h

0.5

0.6

0.7

0.8

0.9

1
bzip gap gzip mcf parser vortex

Figure 7: Commonality in sensitized paths in four components
of a microprocessor core.

logic analyzer combines inputs from several repeated instances of
a PC with a synthesized microprocessor component.
Commonality Estimation: We estimate the gate level commonal-
ity in the sensitized paths by many dynamic instances of a given
static PC using the following expression. If φ is the set of gates in
a circuit that change state in every dynamic instance of a static PC,
and ψ is the set of gates that change state in at least one dynamic
instance of the same static PC, then the commonality in sensitized

gates for that PC is calculated using the ratio
φ
ψ .

S1.2.1 Core Microarchitecture

Using the Fabscalar Core-1, we generate synthesizable RTL de-
sign of a 4-wide out-of-order microprocessor core with 32 entry in-
struction queue, 96 entry physical register file and fetch-to-execute
pipeline depth of 10 (Figure 1).

S1.2.2 Core Components

The following four microprocessor components are selected for
this study. Together, they cover a wide spectrum of micro-architectural
events for studying instruction level commonality in sensitized paths.

• 32-bit Simple ALU: We select this component as it contains a
high logic depth compared to most other structures in a mi-
croprocessor core. Consequently, the ALU provides an in-
teresting structure to study commonality in sensitized paths.
It also offers a way to compare our results with the existing
work.

• Issue Queue Select: This unit implements the instruction se-
lection logic in the processor. Given a request vector from the
existing instructions in the issue queue, it picks up to four in-
structions to be scheduled. The selection logic sets the request
grant line for the selected instructions. Due to frequently re-
peated patterns in instruction selection, we expect a high de-
gree of commonality in this structural component.

• Address Generation Unit (AGEN): This module represents
the effective address computation necessary during typical
load and store instructions. A given static instruction can
compute different addresses in its various instances. How-
ever, often these effective addresses differ by a single bit (e.g.,
while looping through an array structure), resulting in excel-
lent similarity in the sensitized logic paths.

• Forward Check Logic: This unit controls the latches in the by-
pass network to ensure correct execution of back-to-back de-

Scheme Overhead (Scheduler only) Overhead (core-level)

Area Dynamic Power Leakage Power Area Dynamic Power Leakage Power

ABS 0.77% 0.57% 0.87% 0.03% 0.05% 0.01%

FFS 0.77% 0.57% 0.87% 0.03% 0.05% 0.01%

CDS 6.35% 1.56% 6.80% 0.24% 0.13% 0.08%

Table 2: Area and Power overhead of proposed VTE.

as
tar
bz
ip2 gc

c

go
bm
k

lib
qu
an
tum mc

f

pe
rlb
en
ch
sje
ng

sp
hin
x3
ton
to

xa
lan
cb
mk

AV
ER
AG
E

R
e
la
ti
v
e
 P
e
rf
o
rm
a
n
c
e
 O
v
e
rh
e
a
d

0

0.05

0.1

0.15

0.2

0.25

0.3
ABS FFS CDS

Figure 8: Performance Overhead Comparison During Faulty
Execution at high fault rate (0.97V), normalized to EP [12,13].
(Lower is better.)

pendent instructions. If dependency conditions are met, then
the output from a functional unit is latched directly to one of
the inputs in the same or another functional unit. From a given
instruction perspective, these logic steps will compute identi-
cal latching of outputs as long as scheduling decisions remain
identical. Since the code path followed in a program often re-
cur, instructions behind a given instruction tend to recur fre-
quently, leading to identical scheduling decisions. Thus, we
expect a high degree of similarity in the sensitized paths.

These components are synthesized using the Synopsys Design Com-
piler tool. Table 3 presents the characteristics of the synthesized
processor components. The size and complexity of these struc-
tures vary substantially. For example, Simple ALU has the largest
size (4728 gates) and greatest logic depth. In comparison, the For-

ward Check module is substantially smaller. Together, these struc-
tures represent a range of sizes and complexities of sub-modules
expected in modern pipelined microprocessors.

S1.3 Results
Figure 7 presents the commonality in sensitized paths for several

benchmark programs in the four selected components. The results
show the weighted average, based on frequencies of each instruc-
tion, of all dynamic instances from the static instructions exercis-
ing the units. We see a substantially high commonality in the paths
sensitized across a wide range of real programs. On an average,
we observe a 87.4%, 89%, 92.4% and 90% commonality in the is-
sue queue select, address generator, forward check logic and ALU,
respectively. Certain benchmarks like vortex show an extremely
high commonality (e.g., 96% in the issue queue) as it operates on a
smaller range of input values.

S1.4 Opportunity For Predictive Scheduling
The collective high commonality in the sub-modules indicates

a high timing violation predictability from instruction PCs. This
predictability opens up a whole new class of violation mitigation
techniques, radically marginalizing the overhead of tolerating tim-

as
tar
bz
ip2 gc

c

go
bm
k

lib
qu
an
tum mc

f

pe
rlb
en
ch
sje
ng

sp
hin
x3
ton
to

xa
lan
cb
mk

AV
ER
AG
E

R
e
la
ti
v
e
 E
D
 O
v
e
rh
e
a
d

0

0.05

0.1

0.15

0.2

0.25

0.3
ABS FFS CDS

Figure 9: ED Overhead Comparison During Faulty Execution
at high fault rate (0.97V), normalized to EP [12, 13]. (Lower
is better.)

ing violations. Using precise information about a timing violation,
several clock cycles ahead, it is possible to design violation aware
scheduling techniques as presented in this work, to tolerate the vi-
olation with a minimum performance overhead.

S2. HIGH FAULT RATE ENVIRONMENT
During a higher fault rate (VDD = 0.97V), our scheme reduces

the performance overhead by 88% on an average across various
benchmarks (Figure 8). In certain benchmarks like libquantum,
both FFS and CDS are more effective compared to ABS, achiev-
ing 83% overhead reduction compared to 78% reduction. On the
other hand, in astar, ABS outperforms both FFS and CDS. On an
average, our schemes reduce the ED overhead by 83% (Figure 9).

S3. AREA AND POWER OVERHEAD
Table 2 presents the overhead of our proposed schemes com-

pared to the scheduler in the baseline machine that tolerates timing
violations through error padding. Our proposed schemes ABS and
FFS utilize the same fundamental logic in scheduling and tracking
functional unit status, while CDS needs additional logic to dynam-
ically assess the criticality of instructions. At the entire core level
the scheduler consumes 3.9% area, 8.9% dynamic power, and 1.2%
leakage power. Thus, the overheads at the entire core level are min-
imal in our schemes (e.g., 0.24% area overhead, 0.13% dynamic
power overhead, and 0.08% leakage power overhead in CDS).

