
HCI-Tolerant NoC Router Microarchitecture

Dean Michael Ancajas James McCabe Nickerson Koushik Chakraborty Sanghamitra Roy

USU BRIDGE LAB, Electrical and Computer Engineering, Utah State University
{dbancajas, jmnickerson}@gmail.com {koushik.chakraborty, sanghamitra.roy}@usu.edu

ABSTRACT

The trend towards massive parallel computing has necessi-
tated the need for an On-Chip communication framework
that can scale well with the increasing number of cores.
At the same time, technology scaling has made transistors
susceptible to a multitude of reliability issues (NBTI, HCI,
TDDB). In this work, we propose an HCI-Tolerant microar-
chitecture for an NoC Router by manipulating the switching
activity around the circuit. We find that most of the switch-
ing activity (the primary cause of HCI degradation) are only
concentrated in a few parts of the circuit, severely degrading
some portions more than others. Our techniques increase
the lifetime of an NoC router by balancing this switching
activity. Compared to an NoC without any reliability tech-
niques, our best schemes improve the switching activity dis-
tribution, clock cycle degradation, system performance and
energy delay product per flit by 19%, 26%, 11% and 17%,
respectively, on an average.

1. INTRODUCTION
In the forthcoming era of many-core computing, fueled

by the tremendous growth in on-chip resources from tech-
nology scaling, Network-on-Chip (NoC) architectures have
emerged as the design of choice for on-chip communication.
On the other hand, rapid technology scaling has severely un-
dermined the device level reliability, forcing the chip design-
ers to critically consider long term sustainability in system
design. While a large body of recent works targets on-chip
computing resources (processing cores), many-core systems
must consider reliability and sustainability of NoCs. Var-
ious aging mechanisms such as Negative Bias Temperature
Instability (NBTI), Hot Carrier Injection (HCI), Time De-
pendent Dielectric Breakdown (TDDB), and Electromigra-
tion play a major role in degrading performance character-
istics of NoCs over time. Such a performance degradation
can have a massive system level impact in NoCs, and may
ultimately shorten the chip lifetime prematurely [2,3].

To extend the period of fault-free execution, few recent
works have addressed aging challenges in NoCs by mitigating
NBTI or Electromigration. For example, Fu et al. propose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

techniques to mitigate NBTI aging in NoCs by balancing the
duty cycle in the Virtual Allocator circuits [10]. Bhardwaj et
al. propose aging-aware adaptive routing to throttle NBTI
and Electromigration degradation [3]. NBTI is a critical
but recoverable device aging mechanism. In contrast, HCI
is an unrecoverable aging phenomena [15], which affects the
components due to their dependence on switching activity
[17]. Due to aggressive transistor scaling, the thinner gate
dielectric in CMOS transistors increases the probability of
HCI degradation. In fact, HCI can account for a major
component of aging in a 10-year product lifetime [19]. To the
best of our knowledge, none of the existing works consider
HCI aging in the NoC architecture.

In this work, we perform a holistic cross-layer analysis of
HCI degradation in the NoC router microarchitecture. We
focus on the crossbar structure of the router microarchitec-
ture, due to its profound significance in dictating the router
frequency [16]. Combining application level traffic profile
with bit level logic analysis, we find that the crossbar struc-
ture is highly vulnerable to HCI aging. Due to the data
communication patterns in many-core applications, we ob-
serve that a majority of gate-level switching activities are
restricted to a small portion of the entire crossbar circuit
topology, resulting in a large HCI degradation. To throt-
tle HCI aging in the crossbar, we propose a series of low-
overhead techniques that evenly distribute the switching ac-
tivity in the crossbar, without affecting the architecture level
routing latency and bandwidth.

We make the following contributions in this paper.

• We develop a cross-layer framework for HCI aging anal-
ysis of an NoC router. Our framework combines appli-
cation traces, RTL gate-level simulation of a crossbar
circuit, logic analysis, and HSPICE simulation of HCI
degradation effect (Sections 3.2 and S1).

• We analyze the switching activity of the crossbar, a
major circuit in an NoC router using real-world ap-
plications and find that only a small group of gates
account for most of the switching activity. On an av-
erage for PARSEC benchmarks, only 25% of the gates
account for more than 75% of the switching activity,
severely damaging some gates while leaving others un-
scathed (Section 3).

• We propose four schemes using low overhead tech-
niques to evenly distribute the switching activity and
minimize HCI degradation (Section 4). Our four schemes
are: Bit Cruising that distributes the high activity bits
around the channel; Distributed Cycle Mode that ex-
ploits idle cycles in the NoC; Crossbar Lane Switching

that manipulates the port in the crossbar by utilizing
the virtual channels; and a combination of Bit-Cruising
and Crossbar Lane Switching.

• We present a holistic evaluation of our proposals span-
ning full-system simulation down to RTL and gate-
level HSPICE simulation (Section 6). Our best schemes
improve the switching activity distribution by up to
31% (ave: 19%). We also see a maximum of 30%
(ave: 26%) improvement in the clock cycle degrada-
tion, while the system performance degradation is re-
duced by up to 17.6% (ave: 11%) compared to the
baseline scheme. The Energy Delay Product per Flit
is improved by up to 27% (ave: 17%).

2. BACKGROUND
In this section, we introduce our HCI model that corre-

lates threshold voltage degradation with the time spent by
a transistor in stress.

HCI occurs when a carrier overcomes the potential barrier
between silicon and the gate oxide and leaves the channel. A
portion of the carriers (hole/electrons) that leave the chan-
nel are deposited into forbidden regions in the transistor
such as the gate oxide. Throughout a transistor’s lifetime,
these deposited carriers change the conductive properties
of the transistor and ultimately lead to degradation of the
threshold voltage (Vth), drain saturation current (Ion) and
transconductance (∆gm).

The HCI effect on the transistor parameters described
above can be modeled as a power-law with respect to the
stress time (t) [6,22]. We only discuss the Vth model as the
one for Ion is similar. The model for ∆gm can be seen in [6].

∆Vth = A · t
n (1)

where A and n are technology dependent parameters. Pa-
rameter n has been widely accepted as ∼0.5 over a wide
range of processes [1]. Parameter t is the time the transistor
is under stress, while A is derived as:

A =
q

Cox

K
p

Cox(VGS − Vth · e
Eox
E0 e

ϕit
qλEm (2)

All relevant parameters in Equation 2 can be obtained from
Wenping et al. [23]. The stress time of a transistor is derived
from the transition density and the pertinent transitions,
since not all inputs that cause switching have a significant
contribution to HCI aging [13]. We give a brief background
of how we estimate pertinent transitions in our framework
in Section S1.1.

3. MOTIVATION
In this section, we motivate the need for HCI-aware de-

sign of components in an NoC router. We first discuss major
reliability concerns in the datapath of an NoC router. We
then explain our framework for holistic HCI aging analysis
of the NoC crossbar. Lastly, we discuss our results, demon-
strating the need for HCI-aware techniques in the design of
resilient NoC routers.

3.1 HCI Degradation in the NoC Crossbar
Massively parallel programs running in the many-core use

the NoC as an interconnect fabric due to scalability de-
mands. Processors communicate with each other through
messages sent as packets in the NoC. Since on-chip wiring

Circuit Logic Depth # of gates

Crossbar Switch 4 5760
64-bit ALU 46 4728
Address Generator 43 491
Issue Queue Logic 33 189

Table 1: Logic Depth of Various Modules

is abundant, a lot of these packets that were previously sent
over narrow off-chip buses now cannot fully utilize the whole
channel bandwidth available. Coupled with the fact that
most data sent through the network are narrow width [8],
this trend leads to uneven sensitization of transistors, even-
tually causing unbalanced HCI degradation across the chan-
nel.

The crossbar switch is at the heart of the communication
infrastructure in an NoC router1, largely dictating the cy-
cle time [16]. There are three critical reliability issues in
an NoC crossbar. First, the gate level activity in a cross-
bar is only concentrated in a very few bits of the channel
width, due to the bit patterns being sent. This asymme-
try causes unbalanced HCI degradation. Second, since most
upper bit transistors do not switch and only maintain their
values, they can undergo NBTI degradation. Third, since
the crossbar is a wide circuit with a shallow logic depth (Ta-
ble 1), minor delay variations caused by both HCI and NBTI
will have a profound effect on its overall critical path delay.

3.2 Aging Analysis Framework for the NoC
Crossbar

Figure 1 shows the methodology we employ in assessing
HCI degradation in the crossbar circuit. Our cross-layer ap-
proach comprises system level simulation of 16-thread par-
allel programs and their gate-level HCI degradation in a
crossbar circuit. Since HCI depends on switching activity,
we acquire the switching activity of each gate by capturing
cycle-by-cycle actual data values traversing the crossbar. We
then evaluate its overall degradation effect for each transis-
tor in the circuit using our model discussed in Section 2.
However, using real-world applications to assess gate-level
degradation is a computationally intensive task. As such,
we have adopted several important steps to efficiently avoid
long simulation times, while still providing a holistic analysis
of HCI aging effect.

First, we pick multiple sample points in different phases
of execution of the program. The sample points are chosen
according to traffic intensity in the NoC. Each sample phase
contains about 1 million flits. Second, we run our simulation
setup (Section 5) and take the traces of data traffic at the
specified points. Third, we feed these data traces to an
Open Source RTL Verilog model of a 16-core NoC and gather
cycle-by-cycle inputs in the crossbar circuit. Lastly, we use
our novel HCI Aging Analyzer Framework (Section S1) to
analyze degradation in the circuit.

3.3 Results

3.3.1 Logic Depth Analysis

Table 1 shows the results for the logic depth analysis we
perform on major circuits from NoC and processor systems.
We analyzed the crossbar switch from an NoC, the Arith-
metic and Logic Unit (ALU), the memory address generator

1We provide an NoC primer on Section S3.

Figure 1: HCI Aging Analysis Framework

and the issue queue selector of a Fabscalar core [7]. Among
all these modules, the crossbar has the shallowest logic depth
that can be 10× lower than the other circuits. This char-
acteristic makes it more susceptible to aging as there is lit-
tle chance that a different signal path can hide the delay
incurred by degraded transistors. Thus, we need to imple-
ment efficient aging mitigation techniques in the crossbar
data path.

3.3.2 HCI Degradation Results

Figure 2 shows the switching activity data in the cross-
bar circuit. The x-axis shows the percentage of gates while
the y-axis shows its accumulated switching activity as a per-
centage of the total activity. Ideally, a 1:1 ratio between the
percentile gates and the switching activity is optimal for HCI
aging (i.e. a straight line with a 45◦ slope). However, it can
be seen that on an average, only 25% of the gates account
for 75% of the total switching activity. This large asymme-
try leads to unbalanced HCI degradation between different
parts of the circuit and can accelerate failure of NoCs before
their rated lifetime.

We also show the corresponding clock cycle degradation of
an NoC router (22nm, 7 years) in Figure 3 as a result of the
unbalanced HCI degradation. From this data, swaptions ex-
periences the most clock cycle degradation at 10.51%, while
canneal has the least at 8.99%. We can also verify this trend
from Figure 2, where swaptions (left most curve) has the
most concentrated switching activity among all programs.

Both the results above show that the inherent imbalance
in switching activity caused by data patterns sent over the
network causes non-uniform HCI aging in the crossbar cir-
cuit. This asymmetrical aging causes some path delays to
increase disproportionately and will eventually lead to pre-
mature router failure. In the succeeding sections, we will
discuss our proposed designs that primarily shift the switch-
ing activity from one part of a circuit to another in order to
slow down HCI degradation and balance aging impact.

4. DESIGN OVERVIEW
In this section, we discuss our proposed techniques for mit-

igating HCI effect in the router crossbar. Our techniques aim
to balance HCI degradation by distributing the switching
activity. We explore four techniques in the router micro-
architecture: Bit Cruising (BC); Distributed Cycle Mode
(DCM); Crossbar Lane Switching (CLS); and BCCLS that
is a combination of schemes BC and CLS. Apart from DCM,

Percentile��#��of��Gates

0 10 20 30 40 50 60 70 80 90 100

%
 o
f
s
w
it
c
h
in
g
 a
c
ti
v
it
y

0

20

40

60

80

100
blackscholes
canneal
dedup
ferret
fluidanimate
swaptions

Figure 2: Cumulative Distribution Function of the Switching
Activity vs Gate Count

bl
ac
ks
ch
ol
es

ca
nn
ea
l

de
du
p

fe
rre
t

flu
id
an
im
at
e

sw
ap
tio
ns

%
 C
y
c
le
 D
e
g
ra
d
a
ti
o
n

5

6

7

8

9

10

11

12

Figure 3: Clock Cycle Degradation of a 22nm NoC Router due
to HCI after 7 years

all of our schemes involve minimal modifications at the front-
end of the router and do not affect the critical path of the
pipeline (crossbar traversal).

4.1 Bit Cruising (BC)
Bit Cruising swaps the different portions of the data being

transmitted in the crossbar. This technique is largely moti-
vated by two properties of the programs. First, most data
traversing the NoC do not occupy the full channel width
of the network because most data in the cache line are ag-
gregated at the lower bits. In some cases, all data bits are
actually zero. Recent works have also exploited this char-
acteristic by compressing flits and sending only those that
have important data [8]. Second, control requests, while be-
ing sent as a single flit also do not store information in the
most significant portions of the channel as the routing infor-
mation can fit in the first few bytes of the whole channel. In
our setup, the control flit only utilizes 25% of the channel
width, leaving the remaining 75% constant. Together, these
two characteristics radically lower the switching activity in
certain bits while emphasizing others.

To prevent this asymmetry in HCI degradation, the data
being sent across the network must be such that the switch-
ing activity across the channel is distributed. By passing
different data values each time a gate is used, it will balance
the switching activity and hence also uniformly degrade all
gates. This is the primary working philosophy of Bit Cruis-
ing, where highly changing bits are being cruised around the
channel. The Bit Cruiser circuit is situated in the Network
Interface (NI) and does not add any overhead in the

critical path of the pipeline of an NoC. We explain in
detail the functionality and the circuit implementation of
the BC circuit in Section S2.

4.2 Distributed Cycle Mode (DCM)
The Distributed Cycle Mode aims to balance out degrada-

tion of transistors by latching an input value in the crossbar
during idle times such that unswitched transistors in previ-
ous cycles will transition and experience equivalent aging.
As such, it does not relieve any HCI aging compared to our
other schemes but can be beneficial as equally aged transis-
tors have smaller leakage power. The DCM mode can also
be coupled with NBTI recovery schemes such as [21]. We
explain the DCM mode in more detail in Section S4.

4.3 Crossbar Lane Switching (CLS)
Our two previous techniques focused on distributing the

switching activity across an entire channel of an input port
to balance HCI degradation. However, another asymmet-
rical degradation also occurs in the crossbar lanes that are
immune to techniques applied in the channel level.

This type of asymmetric degradation arises when some
input-output pairs are used more than others. We demon-
strate this occurrence with an example in Figure 4 where
there are two paths (p0 and p1) that both use the same
East output port. For instance, if path p0 is used more than
p1, then the transistors along the path p0 will be sensitized
more and hence, experience more HCI degradation.

Our third technique, CLS, is also situated at the front-
end of the router pipeline and aims to balance the usage of
the crossbar lanes2. In the canonical router model, an input
port directly forwards flits to the output ports by establish-
ing a physical connection between the two via the crossbar
switch. As such, flits coming from the same input port will
always use the same crossbar lane to connect to different
output ports. However, the introduction of Input Buffers
(IB) and Virtual Channels (VC) in modern router architec-
tures decouples this one-to-one association because the flits
are first stored in the IB before being transmitted to the
output ports. With trivial modifications in the VC alloca-
tor and the Route Calculation part of the pipeline, we can
control which crossbar lane an input port will utilize at any
given time.

This new allocation and routing policy will now cause the
crossbar circuit to use a different path and activation circuit,
but still send the same data as if it were coming from the
original input port. Thus, we preserve the correctness of the
flit and the route. Similar to the Bit Cruising technique’s
cruise setting, CLS will need a knob input to indicate the
new mapping between input ports and crossbar lanes. We
expand on this and explain the required overheads in imple-
menting CLS in Section S5.

4.4 Bit Cruising and Crossbar Lane Switch-
ing (BCCLS)

Our last technique is a combination of the BC and CLS
schemes. BCCLS combines both the benefit of switching dis-
tribution inside a channel (BC scheme) and the distribution
of activity across many channels (CLS scheme). The im-
plementation of BCCLS comes naturally because both BC
and CLS tackle different portions of the router circuit. BC
reshuffles the data sent through the network while CLS ef-
fectively changes the port a flit is coming from by modifying
the VC allocation and route calculation.

5. METHODOLOGY

2a lane is the path taken by an input port to the output
port

North

South

East

West

Figure 4: East Section of A Crossbar Switch. CLS works on the
inter-lane3 (by changing the path of the data) level while BC
works only on the intra-lane level (by changing the bit ordering
within a path).

In this section, we discuss our simulation infrastructure
that combines multiple tools across different abstraction lay-
ers. Our methodology can be broadly classified into three
categories: Architectural Setup, RTL and Switching Activ-
ity Simulation and HCI degradation analysis using SPICE.

5.1 Architectural Setup
Our simulation setup is composed of a 16-node mesh sys-

tem arranged in a 4×4 grid. Each node in the system is
composed of 1 processor, 1 L1 Cache and a slice of a system-
shared L2 cache. Each router in the system has seven sets of
input and output ports including the ones for the processor
and caches. The flit size is configured at 16-bytes (128 bits).
A single control request fits in a single flit while data flits
needed to transfer a 64-byte cache line are sent in five (4
data + 1 control) consecutive flits. Each processor’s L1 and
L2 cache sizes are 64kB and 512kB, respectively.

5.2 RTL and Switching Activity Simulation
The first step in obtaining an accurate switching activity is

to produce real-word data vectors from standard benchmark
programs as inputs to the RTL circuits. We use the PAR-
SEC [4] benchmark suite (large inputs) running on gem5 [5]
to collect data traces. We collect data traces for the four
center most routers in a 16-node mesh.

After the traces are taken, we implement a trace feeder
through a Verilog VPI based functional verification frame-
work called Teal [18]. This module allows us to easily obtain
cycle-by-cycle values in any sub-module of the router such
as the crossbar.

5.3 HCI Degradation Analysis
Using the outputs from the previous step, our logic analy-

sis tool is then used to obtain the transition densities of each
transistor (Figure 1). We post-process all the results in our
HAAF (Section S1) to calculate Vth degradation and simu-
late them in HSPICE to obtain clock cycle degradation data
for all paths and for different benchmarks. In all our analy-
sis, we use the 22nm [24] technology and an aging period of
7 years.

6. RESULTS
In this section we present the effectiveness of our schemes

across different metrics.

6.1 Comparative Schemes and Evaluation Met-
rics

We compare the following five schemes:

Percentile�#�of�Gates

0 10 20 30 40 50 60 70 80 90 100

%
 o
f
s
w
it
c
h
in
g
 a
c
ti
v
it
y

0

20

40

60

80

100

blackscholes
canneal
dedup
ferret
fluidanimate
swaptions
baseline-ave

Figure 6: CDF for BCCLS scheme.

• BASE: Baseline configuration where the system is un-
modified.

• BC: Bit Cruising scheme, the channel is divided into
four segments and a bit cruiser circuit is placed be-
tween the NI and the router.

• DCM: Distributed Cycle Mode technique presented
in Section S4.

• CLS: Crossbar Lane Switching scheme discussed in
Section 4.3.

• BCCLS: Combination of BC and CLS schemes.

We evaluate all these schemes in terms of switching activ-
ity distribution through Cumulative Distribution Function
(CDF) plots, clock frequency degradation, Energy-Delay Prod-
uct Per Flit (EDPPF) and System Performance. The cir-
cuits used to facilitate all these schemes (except DCM) are
added in the front-end of the pipeline without affecting the
actual crossbar circuit, and as such do not incur any addi-
tional timing overhead in the critical path3.

6.2 Switching Activity Distribution
We show the CDF plots (Figures 5 and 6) of the switch-

ing activity distribution of all schemes. The average of the
baseline scheme is superimposed in each figure. All of our
schemes outperform the baseline by having a lower value
(y-axis) at any percentile point. Hence, it is evident that
our schemes achieved their aim of distributing the switch-
ing activity. At an evaluation point of 20 percentile, our
best performing scheme (BCCLS in Fig. 6) shows 31% less
switching activity compared to the baseline.

6.3 Clock Cycle Degradation
Figure 7(a) shows the cycle degradation for the NoC router

at the end of a 7 year aging period using the ASU 22nm
predictive technology model [24] operating at 1 Ghz. On an
average, the base scheme degrades the clock cycle by 9.4%.
Our schemes improve this degradation by 20.6%, 0%, 12%
and 25.5% for BC, DCM, CLS and BCCLS, respectively.
Combining both BC and CLS schemes results in the least
amount of clock cycle degradation while DCM provides no
improvement from the baseline. As HCI is an unrecoverable
degradation [15], any damage done during normal opera-
tion cannot be rectified. The difference between DCM and
all other schemes is that it is reactive while the others are
proactive (preventing aging beforehand). However, DCM
improves other aspects of the circuit such as the EDPPF
which will be discussed next.

6.4 Energy Delay Product Per Flit (EDPPF)
3DCM’s cycle degradation is taken without the timing of
the additional multiplexers as we want to show the timing
degradation in the crossbar circuit only across all schemes.

We show in Figure 7(b) the EDPPF of all schemes. The
base scheme is shown as a line at 100%. Most schemes
have lower EDPPF compared to the baseline except for
some outliers. For the BC scheme, dedup and ferret have
larger EDPPFs while for CLS, swaptions has a slightly larger
EDPPF than the baseline. Upon further investigation, al-
though BC has helped achieve less degradation and a more
distributed switching activity, its dynamic switching activity
for benchmarks dedup and ferret are actually 63% and 30%
more compared to the average of all other programs. This
unusual activity increase is due to the workload-dependent
bit patterns being sent across the network. For swaptions,
the switching activity for the benchmark is unusually high
in all schemes except for BC.

Even though DCM does not provide any improvement in
the clock cycle, it provides consistent reduction in EDPPF.
This reduction is because optimally aged transistors have
higher threshold voltages and will have lesser leakage power.
Leakage power cannot be ignored in small technologies such
as the one we are using (22nm). On an average, DCM im-
proves the EDPPF by 18% compared to the baseline.

6.5 System Performance
Figure 7(c) shows the overall system performance impact

of all schemes relative to the baseline. DCM shows no im-
provement because it has the same clock degradation as
the baseline. On an average, performance degradation is
reduced by 9.3%, 8% and 11% for BC, CLS and BCCLS
schemes. Maximum is 17.6% for the BCCLS scheme run-
ning ferret. Overall, the system performance improvement
is less than the clock cycle degradation improvement due
to the sublinear dependence of clock frequency and perfor-
mance.

7. RELATED WORK
The aggressive scaling in CMOS technology has made re-

liability a primary design constraint in modern computing
systems. While there has been a wide scope of studies tack-
ling different reliability issues (NBTI, TDDB, HCI) in pro-
cessing elements [11, 21], there is only a limited number of
works which address wear-out mitigation in the on-chip com-
munication infrastructure of such systems. Bhardwaj et al.
implemented a dynamic routing algorithm to equalize NBTI
and electromigration aging across the on-chip network [3].
Fu et al. created new virtual channel allocation and routing
algorithms in order to improve process variation and NBTI
effects in key components of the router [10]. Park et al.,
Fick et al. and Kim et al. explored fault tolerant NoC ar-
chitectures by decoupling modules and having redundancies
in order to recover from intermittent errors in the network
or provide graceful degradation [9] [14] [20].

Most of the studies mentioned above focus on recovering
from intermittent errors or minimizing NBTI effect on stor-
age elements by balancing the duty cycle. On the contrary,
our work focuses on HCI, an unrecoverable aging phenom-
ena that affects combinational components. HCI mitigation
presents a different set of challenges because of its depen-
dence on the switching activity of transistors, as opposed to
NBTI which depends only on the input bias. To the best of
our knowledge, our study is the first work to tackle HCI in
an NoC router microarchitecture.

Percentile��#��of��Gates

0 10 20 30 40 50 60 70 80 90 100

%
 o
f
s
w
it
c
h
in
g
 a
c
ti
v
it
y

0

20

40

60

80

100

blackscholes
canneal
dedup
ferret
fluidanimate
swaptions
baseline-ave

(a) Bit Cruising
Percentile��#��of��Gates

0 10 20 30 40 50 60 70 80 90 100

%
 o
f
s
w
it
c
h
in
g
 a
c
ti
v
it
y

0

20

40

60

80

100

blackscholes
canneal
dedup
ferret
fluidanimate
swaptions
baseline-ave

(b) DCM
Percentile��#��of��Gates

0 10 20 30 40 50 60 70 80 90 100

%
 o
f
s
w
it
c
h
in
g
 a
c
ti
v
it
y

0

20

40

60

80

100

blackscholes
canneal
dedup
ferret
fluidanimate
swaptions
baseline-ave

(c) Crossbar Lane Switching

Figure 5: Cumulative Distribution Graph of BC, DCM and CLS schemes. Solid line in each graph is the baseline average. (Lower
is better.)

bla
ck
sc
ho
les

ca
nn
ea
l

de
du
p

fe
rre
t

flu
ida
nim
at
e

sw
ap
tio
ns

av
er
ag
e

P
e
rc
e
n
ta
g
e
 D
e
g
ra
d
a
ti
o
n

60

70

80

90

100

BC DCM CLS BCCLS

(a) Cycle Degradation
bla
ck
sc
ho
les

ca
nn
ea
l

de
du
p

fe
rre
t

flu
ida
nim
at
e

sw
ap
tio
ns

av
er
ag
e

P
e
rc
e
n
ta
g
e

�D
e
g
ra
d
a
ti
o
n

60

80

100

120

140

160

BC DCM CLS BCCLS

(b) EDPPF
bla
ck
sc
ho
les

ca
nn
ea
l

de
du
p

fe
rre
t

flu
ida
nim
at
e

sw
ap
tio
ns av

e

P
e
rc
e
n
ta
g
e
 D
e
g
ra
d
a
ti
o
n

60

70

80

90

100

110

BC DCM CLS BCCLS

(c) System Performance Degradation

Figure 7: Router Cycle time Degradation, Energy Delay Product Per Flit and System Performance Degradation comparison. Solid
line indicates baseline. (Lower is better).

8. CONCLUSION
In this paper, we find out that Network On Chip archi-

tectures running parallel programs produce communication
patterns that lead to unbalanced HCI degradation through
asymmetrical gate switching activity. We exploit this prop-
erty and present four novel proposals in HCI mitigation in
the crossbar circuit, a major component in an NoC router
which dictates the operating frequency of the network. Over-
all, our schemes distribute the switching activity, improve
the clock cycle degradation, energy delay product per flit
and system performance.

Acknowledgments

This work was supported in part by National Science Foun-
dation grants CNS-1117425 and CAREER-1253024, and do-
nation from the Micron Foundation.

9. REFERENCES
[1] Bertolini, C. and others Relation between HCI-induced

performance degradation and applications in a RISC processor.
Proc. of OLTS (2012), 67–72.

[2] Bhardwaj, K. and others An MILP Based Aging Aware
Routing Algorithm for NoCs. In Proc. of DATE (2012),
pp. 326–331.

[3] Bhardwaj, K. and others Towards Graceful Aging Degradation
in NoCs Through an Adaptive Routing Algorithm. In Proc. of
DAC (2012), pp. 382–391.

[4] Bienia, C. and others The PARSEC benchmark suite:
characterization and architectural implications. In PACT

(2008), pp. 72–81.

[5] Binkert, N. and others The gem5 simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[6] Bravaix, A. and others Hot-Carrier acceleration factors for low
power management in DC-AC stressed 40nm NMOS node at
high temperature. In Proc. of RPS (2009), pp. 531 –548.

[7] Choudhary, N. K. and others FabScalar: composing
synthesizable RTL designs of arbitrary cores within a canonical
superscalar template. In Proc. of ISCA (2011), pp. 11–22.

[8] Das, R. and others Performance and power optimization
through data compression in Network-on-Chip architectures. In
HPCA (2008), pp. 215–225.

[9] Fick, D. and others Vicis: a reliable network for unreliable
silicon. In Proc. of DAC (2009), pp. 812–817.

[10] Fu, X. and others Architecting reliable multi-core
network-on-chip for small scale processing technology. In
Proc. of DSN (2010), pp. 111–120.

[11] Gupta, S. and others StageNetSlice: a reconfigurable
microarchitecture building block for resilient CMP systems. In
Proc. of CASES (2008), pp. 1–10.

[12] Hestness, J. and others Netrace: dependency-driven
trace-based network-on-chip simulation. In Proc. of WNOCA
(2010), pp. 31–36.

[13] Kamal, M. and others An Efficient Reliability Simulation Flow
for Evaluating the Hot Carrier Injection Effect in CMOS VLSI
Circuits. In ICCD (2012), pp. 352–357.

[14] Kim, J. and others A Gracefully Degrading and
Energy-Efficient Modular Router Architecture for On-Chip
Networks. In Proc. of ISCA (2006), pp. 4–15.

[15] Kufluoglu, H. Mosfet Degradation due to NBTI and HCI and
its Implications for Reliability-Aware VLSI Design. PhD
thesis, Purdue University, 2007.

[16] Kundu, P. On-Die Interconnects for Next Generation CMPs. In
Proc. of WOCIN (2006).

[17] Lorenz, D. and others Aging analysis at gate and macro cell
level. In Proc. of ICCAD (2010), pp. 77–84.

[18] Mints, M., and Ekendahl, R. Hardware Verification with
C++: A Practitioners Handbook, vol. 1. Springer, 2006.

[19] Nigam, T. and others Accurate product lifetime predictions
based on device-level measurements. In Proc. of RPS (2009),
pp. 634 –639.

[20] Park, D. and others Exploring Fault-Tolerant
Network-on-Chip Architectures. In Proc. of DSN (2006),
pp. 93–104.

[21] Siddiqua, T., and Gurumurthi, S. Enhancing NBTI Recovery in
SRAM Arrays Through Recovery Boosting. IEEE Trans. on

VLSI Systems. 20, 4 (2012), 616–629.

[22] Takeda, E., and Suzuki, N. An empirical model for device
degradation due to hot-carrier injection. Electron Device
Letters 4, 4 (1983), 111 – 113.

[23] Wang, W. and others Compact Modeling and Simulation of
Circuit Reliability for 65-nm CMOS Technology. IEEE Trans.
on Device and Materials Reliability (2007), 509 –517.

[24] Zhao, W., and Cao, Y. Predictive Technology Model.
http://ptm.asu.edu/.

Supplemental Materials

S1. HCI AGING ANALYZER FRAMEWORK

(HAAF)
In this section, we discuss our Aging Analyzer Framework

used to evaluate HCI degradation of all gates in a circuit.
We first give an overview of pertinent transitions of a gate
and then discuss our simulation framework.

S1.1 Pertinent Transitions
HCI affects a transistor during a switching activity. How-

ever, for a reliability evaluation of a VLSI circuit consisting
of thousands of transistors operating for years (typically 7-
10), accurate HCI degradation analysis using HSPICE takes
too long. As such, it has been determined by [13] that only
certain type of transitions in a logic gate generate interface
traps in its transistors. Hence, we only calculate the HCI
impact of these transitions, allowing for a practical simu-
lation time. We list the pertinent transitions of the gates
we used in our design (INV, NAND, NOR) in Table 2, the
transitions indicated in the second column and third column
induce HCI degradation for NMOS and PMOS transistors,
respectively. We simulate all these transitions and evaluate
their HCI aging impact on the logic gates. Only transitions
that affect the transistor near the output node are counted
as they contribute the most to HCI [13].

GATE NMOS PMOS

INV ↑A ↓A
NOR (↑A,B) (A,↑B) (↓A,B)
NAND (↑A,B) (A,↓B) (↓A,B)

Table 2: Pertinent Transitions of Various Gates

VDD

A

BA

B

out

Gnd

VDD

out

Gnd

A

A

B

B

A

VDD

Gnd

out

INV NAND NOR

Figure 8: Basic Gates

S1.2 Aging Framework
In the gate level, HCI degradation is manifested during

transistor switching. We developed a tool to examine the
possible HCI impact on all gates of a circuit through ex-
tensive logic analysis. Our HAAF tool works by taking
the input in every clock cycle and propagating the logic in
a domino fashion until it reaches the output. During the
course of this propagation, some gates will switch while oth-
ers will not. We record all these transitions in all clock cycles
and use them to calculate the transition density of the gate.
Note that we post-process all the transition events to deter-

��

��

��

�

�

�
�

�

��

�

�

�
�

�

�� ��

��

��

Figure 9: HCI Analysis

mine if they are pertinent transitions before calculating the
transition densities.

Figure 9a shows a detailed example of how this analysis is
done on a circuit with three gates indicated as G0, G1, G2,
with initial states as shown4. Figure 9b shows a new set
of inputs being fed and denotes the specific gates that will
change (highlighted in gray). G0 and G2 changes in this
cycle while G1 does not. We calculate the transition density
(TDg) of a gate g as follows:

TDg =

x
X

n=1

Sgn

x
(3)

where x is the total number of cycles simulated and Sgn = 1
if gate g made a pertinent transition at cycle n (0 otherwise).
We then use the transition density to calculate the new Vth

using our model in Equation 1. A new propagation delay tg

is then obtained for each gate g using HSPICE simulation.
Note that we simulate tg for all gates and not just the ones
in the critical path because the critical path can change de-
pending on the extent of degradation in different parts of
the circuit. Finally, we calculate the new propagation delay
(TP) of the whole circuit as:

TP = max(X0, X1, ..., XY) (4)

Xy =

Hy
X

g=1

tg (5)

where Y is the set of all paths in the circuit and Xy is the
total propagation delay of path y. Hy is the set of all gates
in path y.

The process discussed above forms the bulk of our eval-
uation framework and although it is very computationally
intensive, its thoroughness allows us to accurately evaluate
the benefits of our architectural techniques at a circuit-level
accuracy.

S2. CIRCUIT IMPLEMENTATION OF BC
We discuss the implementation and overhead of the Bit

Cruiser circuit as a continuation of the discussion in Section
4.1.

Figure 10 shows the Bit Cruiser circuit that is responsible
for cruising the bits around the channel. Bit Cruising can
be implemented at different granularities. However, in this
work we use a granularity of four (i.e. the whole channel
is segmented into four equal parts) because the most lower
quarter of the channel bits have the most activity based on
our input traces. The Bit Cruiser circuit takes in as inputs

4initial states are a result of a previous execution

�� �� �� ��

����������	���
������

�
���	����
������

Figure 10: Bit Cruiser Circuit

Figure 11: Time Lapse Example of a Bit Cruiser Circuit
for a 12-bit channel. Signal cs is the cruise setting.

the channel bits and a 2-bit cruise setting. The cruise setting
is then used as an input to a 4-to-1 multiplexer in order to
reshuffle the bits as desired.

We show in Figure 11 an example of the effect of bit cruis-
ing on channel bits. The cs signal in the figure represents
the cruise setting. In this example, we assume that in each
clock cycle, cs is increased by one5. The shaded circles are
used to indicate one segment of a channel. In the figure,
when cs is equal to zero, the BC circuit output is the same
as the channel input (i.e. or when there is no BC circuit
at all). When cs=1 the lowermost segment is transferred to
the uppermost and the second lowermost segment is shifted
to the former’s place (direction indicated by an arrow). All
other segments follow in unison.

S2.1 Overhead of BC
The circuit in Figure 10 will be placed in the Network

Interface right before sending the flit to the router of the
source node. Since the bits being sent through the network
are now jumbled, the router front end must be able to ap-
propriately identify the header flit bits in order to route the
circuit correctly. To this end, we introduce a Routing Infor-
mation Extraction (RIE) circuit. The RIE circuit extracts
the appropriate bits from the shuffled channel bits and places
it in a Routing Information Register (RIR), which will be ac-
cessed by the Routing Calculation module in the succeeding
pipeline stages.

Figure 12 shows the implementation of the RIE circuit.
Every time a flit arrives and is about to be written in the
virtual channel, the RIE circuit (using the cruise setting
information) will determine if the flit is a head flit. If it
is, the routing information is latched into the RIR. The RC
module in the next pipeline stage will then use the contents
of the RIR to route the flit in the corresponding VC. Since
there is only going to be one packet in each virtual channel,
the overhead for the RIR is minimal. We next calculate its
overhead in a typical modern NoC configuration.

In modern NoCs, the network width is often large as on-
chip wiring is abundant and bandwidth is also important.

5Note that the cruise setting can also be altered for larger
time granularities.

Figure 12: Routing Information Extraction Circuit

For a 128-bit flit width in an 8×8 network with an algorith-
mic routing algorithm that uses the number of hops in the
x and y directions, the RIR will only require 3 bits in each
direction for a total of 6 bits. If there are 5 flits in each
buffer, then the overhead is 0.9%. For deeper flit buffers,
the overhead further goes down.

S3. NOC AND CROSSBAR CIRCUIT PRIMER
In a network on chip, the crossbar circuit acts as the heart

of communication of all inputs and outputs in the router.
Hence, it’s reliability is of extreme importance in the func-
tioning of the whole NoC. Moreover, the critical latency de-
lay of a crossbar circuit dictates the clock frequency of the
whole NoC [16]. Thus, any minor deviations in its critical
path could corrupt the transmitted data and will lead to
total failure in the router and the NoC itself. This makes
the crossbar circuit a good candidate as a case study for our
HCI mitigation techniques.

Packets in NoCs are sent from one node to another by
hopping through intermediate nodes. Figure 13 shows a 16-
node mesh where node 0 sends a packet to node 8. Before
reaching node 8, the packet will traverse through nodes 1,4
and 7. The router in each node is responsible for the correct
transmission of a packet to its adjacent nodes.

Figure 14 shows a simplified model of a typical router.
The end goal of a router is to transfer flits from an input
port to a specified output port. In each cycle, the router
will receive multiple requests to route, an allocator circuit
will then determine an optimal connection of input and out-
put ports. In the succeeding cycle, the allocator signals the
crossbar and the flits traverse the switch, and are sent to the
next adjacent router. This process continues in each node
until the flit reaches the destination node.

As the crossbar is at the focal point of packet transmission
in an NoC, we choose the crossbar circuit as a case study
for our HCI mitigation techniques, our techniques could be
easily adapted to work on other parts of an NoC.

S4. DISTRIBUTION CYCLE MODE (DCM)
The Distribution Cycle Mode technique utilizes idle cycles

to balance out the HCI degradation of transistors. Most
real-world applications spend a considerable time waiting
for information from the NoC. Moreover, cache coherence
requests are self-throttling or that succeeding requests are
not sent unless a reply is received [12]. As such the crossbar
spends most time (average of 85% in our setup) sending no
data through the crossbar. This presents us with tremen-

� � �

� � �

� � �

Figure 13: 3x3 Mesh NoC. Node 0 sending a packet to
node 8.

NORTH

SOUTH

EAST

WEST

NORTH

SOUTH

EAST

WEST

Figure 14: Simple NoC Router

dous opportunities in using reliability techniques without
incurring a latency overhead. Our second technique, DCM,
introduces a new mode of operation for the crossbar circuit
during idle phases of execution. In DC mode, the crossbar
uses optimized inputs to achieve a near-uniform switching
activity across the data channel.

To explain the idea behind DCM, we introduce a simple
example of a 2-bit NOR-gate in DC mode. Figure 15 shows
a 2-bit NOR gate in standard CMOS executing optimized
inputs. For each set of inputs, the transition number is
indicated along with an arrow in the circuit that indicates
the corresponding path that the output signal has taken. For
instance, transition 0: inputs A=0 and B=0, switches both
the PMOS transistors while transition 1 (A=0, B=1) only
switches NMOS B. The key to successfully implementing
the DC Mode is to balance out the number of switching
transitions that each transistor makes.

In this example, executing transitions 0-2 once gives each
transistor a balanced switching count. Note that there are
four possible inputs for the NOR gate but we only need
three in order to get a balanced HCI degradation. Being
able to accurately determine the needed inputs, rather than
exhaustively using all possible, is the key to optimal DCM
operation.

S4.1 Implementing DCM in the Crossbar
���

� �

�

�

���

�

�

�

���� �

�

�

�

�

� �

�

�

�

�	

�

�

Figure 15: Two-bit NOR gate showing the different tran-
sitions with respect to inputs.

Applying DCM to a big circuit such as a router crossbar
poses some major challenges because optimal HCI degra-
dation is only achieved when the inputs are carefully con-
structed to balance the switching activity. However, despite
the enormity of the crossbar, its regular structure allows us
to analyze a small subset of the circuit and use our results
to optimize the whole component.

There are three key requirements to seamlessly applying
DCM while maintaining the correct and unobstructed exe-
cution of the NoC Router. We outline them here and discuss
each one in detail. They are:

1. Idle time identification - To engage the crossbar in
the Distributed Cycle Mode, idle cycles must be cor-
rectly identified or else the correct value that is sup-
posed to be transferred during the switch traversal stage
of an NoC is going to be overwritten. This overwriting
can corrupt a running program.

2. Identification of optimal inputs - The optimal in-
puts to the crossbar circuit are derived using an offline
analysis similar to the one discussed in the previous
subsection. This is a one time effort that can be used
throughout the lifetime of the NoC router.

3. Feeding mechanism of customized inputs - The
crossbar must have an option of using the inputs pro-
vided by the analysis above in order distribute HCI
aging in all of its transistors.

In a typical router in an NoC, the crossbar switch has
multiple lanes to handle simultaneous demands of multi-
ple inputs to multiple outputs (NORTH, SOUTH, EAST,
WEST). As such, when no input port is scheduled to trans-
fer a data to a specific output port in a particular time, that
output port (or lane) is considered idle. Thus, correctly
identifying the idle cycles of a crossbar depends mostly on
the output of the scheduling algorithm of the switch.

The main mechanism to identify idle cycles is already
present in any Switch Allocator (SA) implementation as it
outputs a schedule of the switches every clock cycle. Fig-
ure 16 shows an NoC router along with the supplementary
logic and components to identify idle cycles and implement
DCM. Aside from the main DCM module that serves as the
control unit for DCM operation, a lookup table and an ad-
ditional multiplexer is added for the purpose of storing the
optimized values and to have the ability to load them when
desired, respectively.

In each clock cycle, the SA takes in as input the requests
of different virtual channels and input ports and gives the
permission to specific input ports to use the output ports
in the next cycle. If there are no contention of requests,
all requests could be permitted to traverse in the crossbar
the next cycle. However, if there is, it is resolved based on
a scheduling priority. In other cases though, there simply
are not enough requests to keep the switch/crossbar fully
utilized. When this happens, our DCM module immedi-
ately senses this and queries the lookup table and instructs
the multiplexer to load an HCI aging-optimized value in the
subsequent cycle.

S5. CROSSBAR LANE SWITCHING
In this section, we elaborate in more details the imple-

mentation of the Crossbar Lane Switching scheme discussed
in Section 4.3. We first discuss the baseline implementation

Figure 16: Modified NoC Router to Accommodate DCM
operation.

of a modern NoC Router and then explain our modifications
in order to implement CLS.

Figure 17 shows a logical diagram for a traditional Virtual
Channel (VC) flow NoC Router with two input ports and
two virtual channels per input port. The virtual channels
are used to handle multiple concurrent streams per input
port, each waiting for its turn to use the crossbar switch,
hence improving the overall bandwidth of the network. In
our example, the north input port can only utilize VCs 1
and 2, while the south utilizes 3 and 4. In each clock cy-
cle, all VCs request usage of the crossbar for the succeeding
cycle. The switch allocator will then determine a winner
and subsequently connect the virtual channel to the desired
output buffers.

input buffers/
virtual channels

vc1

d
e
c
o
d
e
r

vc3

switch
allocator

 VC
allocator

North lane

South lane

North Input

South Input

Crossbar Switch

Output Buffers

Figure 17: Baseline implementation of an NoC router
showing the virtual channels, input ports and the crossbar
switch. Output Ports and Output Virtual Channels are
not shown.

As we have discussed in Section 4.3, the lanes of the cross-
bar can undergo uneven degradation when certain input and

output pairs are used more. CLS aims to balance this degra-
dation by evenly distributing the paths taken by a flit. Fig-
ure 18 shows the necessary modifications on the NoC Router
to be able to implement CLS. Also, the VC allocator must
be able to assign any incoming flit to any virtual channel
(additional lines in the decoder)6. As the virtual channels
are implemented as SRAM arrays [SR1] similar to a reg-
ister file in a processor, there will be no additional logic
needed to access the different virtual channels. The only
extra logic needed will be for the VC allocator to distribute

6Note that there are many possible implementations of the
Input Buffers. Our overhead is analyzed with respect to an
open-source RTL implementation of a modern NoC router
[SR1].

input buffers/
virtual channels

switch
allocator

 VC
allocator

North lane

North Input

South Input

Crossbar Switch

Output Buffers

South lane

Figure 18: CLS Implementation. VC Allocator Can As-
sign Incoming Flits to Any Virtual Channel.

the flits across the many virtual channels which can be ac-
complished by a simple counter circuit which is added to the
offset of the decoding stage. The Route Calculation (RC)
stage will automatically determine the route of the flit since
the routing information is stored in the head flit. The RC
will then send the SA the appropriate commands, preserving
the correctness of the flit and its route.

The light blue line in Fig. 18 shows the path taken for
a flit arriving at the North input and traversing the South
lane of the crossbar. This is made possible by storing the
flit in virtual channels 3 or 4 and then informing the SA to
use the same channel as input to the crossbar. In summary,
an incoming flit uses the same input port, a different virtual
channel and crossbar lane, and the same output port.

S6. REFERENCES
[SR1] Daniel Becker and William Dally Open Source

NoC Router RTL https://nocs.stanford.edu/cgi-
bin/trac.cgi/wiki/Resources/Router.

