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ABSTRACT

Three-dimensional Multicore Systems present unique oppor-
tunities for proximity driven data placement in the memory
banks. Coupled with distributed memory controllers, a de-
sign trend seen in recent systems, we propose a Dynamic
Memory Relocator for 3D Multicores (DMR3D) to dynam-
ically migrate physical pages among different memory con-
trollers. Our proposed technique avoids long interconnect
delays, and increases the use of vertical interconnect, thereby
substantially reducing memory access latency and commu-
nication energy. Our techniques show 30% and 25% aver-
age performance and communication energy improvement
on real world applications.

1. INTRODUCTION

A key factor limiting the system performance stems from
the increasing gap between the processor and memory speed.
Recent fabrication techniques such as 3D die stacking seek
to solve this problem by bringing the memory physically
closer to the processor. 3D die-stacking is used to bond
multiple wafers in a vertical manner using low-latency and
high bandwidth vertical interconnects [5,7], allowing faster
communication between the processor and the memory.

Several previous works evaluate the potential benefits of
3D-stacking in system performance. Loh studied aggres-
sive memory configurations that take advantage of a 3D
processor-memory setup [12]. Other studies evaluated the
benefit of placing memory directly on top of the proces-
sor and have reported huge performance speedups [11,13].
However, many of these studies considered systems with a
centralized memory controller (MC). In a traditional 2D sys-
tem, this setup was suitable because of the limited pin count
and the slow off-chip communication interface, which dom-
inates the memory latency. On the contrary, such design
limitations are not present in 3D systems because of the
abundance of low latency Through Silicon Via (TSV) in-
terconnects. Moreover, with the increasing core count in
multicore systems, we can expect MCs to grow in number to
accommodate the bandwidth needed. This idea has been re-
cently incorporated in several traditional 2D systems [2,21].
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In this work, we identify a new problem that arises in 3D
systems with multiple MCs: the problem of suboptimal data
placement that precludes the performance brought about by
3D die stacking. In a 3D system with distributed MCs, data
located on a memory bank directly above the requesting pro-
cessor will experience a smaller delay as compared to data
that needs to traverse an interconnect system. A typical
modern on-die interconnect such as HyperTransport [9] still
requires 1004 ns in order to send 8 bytes of data. Mean-
while, vertical interconnect delays using TSVs and 3D dram
access times are just a small fraction of this at 12ps [13] and
Tns [19], respectively. Therefore, we can achieve 10z ac-
cess latency improvement if data is directly accessed through
TSVs rather than being transferred using the interconnect.

In a 3D Multicore, the placement of data in a memory
bank and the location of the processing core determines if
that data can be accessed through the TSV or if it must
traverse the interconnect. However, current system designs
are agnostic about this critical consideration, thereby sub-
stantially undermining the potential performance and en-
ergy efficiency in a 3D Multicore. In this work, we study
hardware mechanisms that alleviate the interconnect prob-
lem by remapping data to an optimal location in a 3D Mul-
ticore System. Our contributions are as follows:

e We show that the data mapping policy of a modern
OS can hurt performance of 3D multicore systems with
multiple MCs. Our analysis with a detailed full system
simulation for real world applications shows 117-280%
(average 170%) performance improvement if all non-
local accesses are transformed into local accesses as a
result of efficient data placement (Section 3).

e We propose DMR3D, a hardware technique that mini-
mizes non-local accesses by identifying critical mem-
ory pages and migrating them to a closer memory
bank. We present two algorithms for DMR3D: a Global
Scheme that dynamically allocates migration slots to
different threads and a Thread On-Demand Scheme
that statically allocates equal migration slots to indi-
vidual threads (Section 4).

e We perform a thorough evaluation of our two DMR3D
schemes using a state-of-the-art full system simulator
(Section 5). Our best performing scheme increases per-
formance by 7-72% (ave: 30%), increases local accesses
by 9-95% (ave: 50%) and improves communication en-
ergy by up to 48% (ave: 25%) (Section 6) compared
to the baseline. We also compare our schemes with a
representative scheme for NUCA caches (Victim Repli-
cation [22]), and observe an average of 33% improved
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Figure 1: Logical organization of HP G7 series composed
of AMD Istanbul processors. The processors communicate
through point-to-point Direct Connect Architecture. DIMMs
attached to each socket are local memory.

performance.

2. BACKGROUND

In this section, we first describe a modern Non-Uniform
Memory Access (NUMA) system. We then introduce our
3D NUMA processor-memory system based on recent work
on 3D integration.

Modern server machines typically distribute work to sev-
eral chip multiprocessors. Because each CMP is composed of
multiple aggressive cores, recent designs [2,21] have included
a memory controller (MC) on-chip in order to satisfy increas-
ing bandwidth demands. In this setup, the entire memory
address space is equally divided among all MCs such that
independent requests to different memory sections can be
serviced simultaneously. Figure 1 shows an example of this
setup. In the figure, processors accessing memory locations
residing in a different socket will experience a longer de-
lay compared to the ones which reside in the same socket
(also known as local access). Previous studies estimate the
non-local access to be 33%-100% longer than the local ac-
cess [15,20].

2.1 Baseline System Organization

In our simulation setup, we model a 64-bit processor sys-
tem with 8GB of total addressable main memory. As de-
picted in Figure 2, we have a 3D system with the first
layer containing all 8 processors along with four memory
controllers connected by a ring network interconnect. The
second and third layers contain the DRAM cells. Each node
in our NUMA system is composed of two processors, one
MC and two memory ranks in the topmost two layers.

We recognize three different access types based on source-
destination proximity: local, neighbor and remote. Figure 3
shows an example of how different nodes interact with each
other. The most basic type of access is when a processor
requests data that belongs to the same node (Figure 3a).
In Figure 3b, if a processor in node 1 requests data which
resides in local memory of node 2, it requires a single hop in
the interconnect network. We refer to this request as neigh-
bor. Consequently, a processor in node 1 requesting data
situated in the local memory of node 3 would now require 2
hops (Figure 3c). We refer to this type of access as remote.

2.2 DRAM organization

The 8GB main memory is composed of eight 1 GB ranks.
Data bus width is 64-bits. Each rank is constructed using

Node 1
Node 3

Node 0
Node 2

rank 0,4 rank 2,6
a.) Layer 1 b.) Layer 2-3

Figure 2: 3D setup used in this study.

a.) 0-hop b.) 1-hop c.) 2-hops
Figure 3: Different Request Distances.
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Figure 4: DRAM Address Mapping Policy.

4 128 Mbit, x16 DDR3 devices. We based our DRAM de-
vice model on Micron MT41J128M16 [1]. Timing details
are indicated in Table 2 of Section 5. The address mapping
policy that we used is shown in Figure 4 and is similar to
Intel 845G Memory Controller. With this mapping, all data
from a memory page being worked by a particular thread is
always located in the same rank, bank and row which allows
easier migration of data from one bank to another.

3. MOTIVATION

In this section, we first discuss why current technologi-
cal trends demand a more efficient mapping of data. Then,
we analyze how data from different programs are mapped
across the memory banks. Along with the results of our mo-
tivational study, we will argue why such intelligent mapping
policies are desired.

3.1 Effects of 3D integration on NUMA ratio

In current multicore systems, the NUMA ratio® is around
1.5 [15]. With 3D integration, this ratio will further in-
crease because on-chip 3D DRAMs will be naturally faster
while interconnect latency in the processor layer will remain
the same. To explain this point clearly, we gathered values
of different NUMA system parameters from three machines
manufactured in the last decade (2004, 2006, 2011). We
combine data from the work of [3], [16] and Tezzaron 3D
DRAMSs [19] to estimate NUMA ratios of future 3D systems.
Both [3] and [16] use the same benchmarking methodology
so we were able to combine their data with little effort.

To get the main memory latency values, both studies ran
a program that strides through an array, the stride size is
then increased until all accesses effectively miss the last level
of cache. The interconnect latency is then the difference
between the remote and local access latency. We consolidate
all this data and show it in Figure 5(a). The first two data
points from the graph (V1280 and Opteron) are taken from
[3]’s work, while the third one (MagnyCours) is taken from
[16]’s study. Our estimates for these parameters in a 3D

INUMA ratio is the ratio between the remote and local
memory latency
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Figure 5: Technology Trends, Access Profile and Performance Opportunity in 3D Systems.

multicore system are sketched in broken lines.

3.1.1 NUMA ratio

The NUMA ratio can be calculated using two parameters:
interconnect and DRAM access latency. Local memory re-
quests only experience DRAM latency while non-local re-
quests include interconnect latency. The increase in NUMA
ratio in 3D systems is largely driven by the inability of in-
terconnects to scale well with 3D DRAM latency. We show
dramatic leaps in the value of this parameter in Figure 5(a).
Going from a 2D system to a 3D, the penalty of a non-local
access increases by 700%, or to a ratio of 8. Next, we discuss
how trends in interconnects and DRAMs drive this param-
eter to enormous values.

3.1.2 Interconnect

One notable difference from the interconnect used by the
three machines in Fig. 5(a) is that both Opteron and V1280
use off-chip communication while MagnyCours uses on-
chip communication. However, looking at the interconnect
delay in Figure 5(a), the values are almost the same. This
poor scaling of interconnect delay primarily stems from the
long RC delays within a given chip, which dominates most
of the communication through the interconnect fabric.

3.1.3 DRAM Latency

3D DRAM modules use TSVs to reduce latency and in-
crease bandwidth. As such, the latency of 3D DRAM mod-
ules are substantially smaller compared to that of its 2D
counterparts. Prototypes of 3D DRAMs from Tezzaron have
access times of 7ns [19]. We used data sheets from Tezzaron
to calculate latency to get a single cache line, both for 64
and 128-bit versions of DRAM. These values are shown as
two estimations in the DRAM latency curve in Figure 5(a).

3.2 Workload Access Patterns

In the light of the trends shown above, we perform work-
load characterization of modern benchmarks on our setup
(discussed in Section 5) to determine the amount of non-
local accesses in each benchmark. Figure 5(b) shows the
distribution of memory accesses of programs composed of
high memory bandwidth SPEC 2006 programs. From the
figure, workload 3 (miz3), about 25% of its accesses are lo-
cal while 75% of its memory accesses incur large interconnect
latencies. On an average, for all workloads, about 68% of
the memory accesses are to non-local nodes.

3.3 Performance Opportunity in 3D Systems

From these results, we also conducted another experiment
to see the performance improvement if fractions of the non-

local requests were transformed to local requests as a result
of a more efficient data mapping. For this experiment, we
assume the NUMA ratio to be 8. Figure 5(c) shows the
result of this study. The four bars represent the performance
improvement if fractions of non-local memory requests were
routed locally. For instance, if all non-local accesses of miz4
were routed to the local memory as a result of migration,
its performance would improve by 280%. As a whole, there
is an average improvement of 10%, 27%, 54% and 171% if
we can transform 25%, 50%, 75% and 100% of non-local
accesses into local accesses, respectively.

The results of our motivational study show a tremendous
opportunity for performance improvement. We now discuss
our proposed techniques to realize this opportunity in a sys-
tem design.

4. DESIGN OVERVIEW

In this section, we discuss the design of Dynamic Memory
Relocator for 3D Multicores (DMR3D). We first give a brief
overview of our design, discuss two schemes of implementing
DMR3D, and then explain hardware implementation over-
heads.

The key principle of DMR3D is identifying and manag-
ing data that needs to be swapped to increase the relative
percentage of local requests in the whole system. To this
end, DMR3D creates an online access profile of data from
different memory banks to determine which data needs to be
migrated. At certain time intervals (hereafter referred to as
epoch), a DMA copy is issued to swap data between mem-
ory banks. We propose two DMR3D schemes that differ in
the way the profiling and migration of data is done. The
first scheme (Global) relies on a global epoch to synchronize
profiling and migration of data, while the second (Thread
On-Demand) uses a per-thread epoch.

We now discuss the basic working principle of our pro-
posed DMR3D (Section 4.1), two proposed schemes (Sec-
tions 4.2 and 4.3), and the corresponding overheads (Section
4.5).

4.1 Hardware Structures in DMR3D

DMRS3D is composed of two major hardware structures:
the Profile Table (PT) and the Address Remapping Table
(ART). Both of these tables are added to each memory con-
troller. The PT is used to identify access patterns of threads
while the ART is used as a layer of indirection for memory
pages that were remapped.

To explain DMR3D in detail, we provide an example of
the sequence of events that happen during a memory request
in Figure 6. In this example, it is assumed that the system
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has already swapped some data in different memory banks.
When a memory request is added in the memory queue, its
page number is scanned in the ART. If there is a hit, the
address in the memory queue is modified to reflect the local
location of the data. Otherwise, the request is immediately
redirected to a non-local MC (not shown in figure) or stays
in the queue if it is local to the node.

There are also cases when an originally local address is
now mapped to a non-local bank because of a data migra-
tion initiated by a non-local MC. For correctness issue, we
handle these cases by storing such mappings in ARTs of MCs
involved in the swap.

DMR3D reshuffles data between different nodes by chang-
ing certain sections of the memory address. Since the mem-
ory ranks are distributed uniformly across all nodes, DMR3D
relies on this information to construct the new address of
memory pages. The exact mechanisms for address transla-
tion and migration are discussed in Section S5.

The next key structure in DMR3D is the PT that is used
to create an online access profile of memory addresses re-
quested by the running threads. As the whole execution is
divided into several epochs, DMR3D uses the profile of a cur-
rent epoch to anticipate memory accesses in the next epoch
by exploiting the temporal and spatial locality property of
programs. Shown in Figure 7 is the mechanism behind the
use of the PT. For each request received in the memory con-
troller, the address is analyzed using the PT to get insight
on which memory pages are accessed the most by the run-
ning programs. The PT contains the page numbers and its
access count that are used to guide data migration at the
end of every epoch.

While data migration is being done, accesses to these re-
mote data will still be serviced by the non-local MC. Once
migration finishes, the ART table is then populated with
new address mappings which are then used by their respec-
tive memory controllers.

4.2 Proposal 1: Global Scheme (GS)

In the Global scheme, the migration of data is done at

Parameter Value

MP Size and Freq 8-core, 2Ghz

Re-order Buffer 64 entries

Fetch/Dispatch 4/cycle

Ezec/Commit 4/cycle

L1 I-cache 32 KB/4-way, private, 2-cycle
L1 D-cache 48 KB/4-way, private, 2-cycle
L2 cache 256 KB/8-way, shared, 16-cycle.
Cache Line 64 Bytes

Table 1: NUMA Parameters

constant time intervals. The main motivation of this scheme
is the fact that different programs running on a multicore
present different demands to the memory system. This scheme
gives more priority to threads that access the memory more
and less to threads that do not, particularly CPU-bound
threads. GS improves the performance by devoting more
migration opportunities to memory-intensive threads that
are severely crippled by the interconnect latency.

At the start of each epoch, GS will migrate the top 200
pages servicing non-local requests and migrate them at ap-
propriate locations. In this work, we chose a 1 million cy-
cle epoch size and 200-page size migration in each epoch.
We also vary these two parameters to see their effects on
DMR3D (See Section S6 for our design space exploration).

4.3 Proposal 2: Thread on-demand Scheme
(TODS)

While GS focuses on improving the overall system locality
by giving more migration opportunities to memory-intensive
threads, TODS allocates equal migration opportunities for
each running thread in the system. In TODS, the threads
strive to maintain a specific ratio (threshold) between their
local accesses and non-local accesses. Once this threshold
has been crossed, the MC then triggers migration in order
to satisfy the threshold requirement. We discuss the moti-
vation behind TODS in more details in Section S2.

4.4 Cache Coherency Issues

During page relocation, coherent data could be moved
around and might be corrupted if not synchronized prop-
erly. As such, any pending writes to a memory location
being migrated are stalled in the remote MC until the data
has been completely transferred. The write requests, along
with succeeding queued requests are then forwarded to the
new MC. Read requests on a memory location being trans-
ferred are serviced by the original MC.

4.5 Migration Overhead

The performance increase resulting from the use of DMR3D
is based on transferring memory pages to a physically closer
bank when they are likely to be referenced again soon, thus
avoiding the repeated cost of interconnects. We assume the
presence of an overlaid DMA channel responsible for moving
data around DRAM banks, similar to [6] and [18].

Other pertinent overheads such as the sizing of PT, ART
and the latencies are discussed in Section S4.

5. METHODOLOGY

Our detailed full system simulator is built upon the Win-
driver Simics [14] platform. Important parameters of our
system are shown in Table 1. We modeled a modern mul-
ticore system composed of 8 superscalar processors with a



Parameter Value

Device Micron MT41J128M16 [1] DDR3

Configuration 1 rank/DIMM, 64-bit channel, 4
devices/DIMM

Clock 2 Ghz

Timings tcocp = trop = 20ns

DRAM Capacity 8 GB

NUMA ratio 4 (350 cpu cycles)

Table 2: Memory System

Name Threads

Miz 1 bwaves-cactus-mcf-gems-lbm-zeusmp-sjeng-leslie
Miz 2 bwaves-bwaves-cactus-cactus-mcf-mcf-gems-gems
Mix 3 leslie-leslie3d-sjeng-sjeng-zeusmp-zeusmp-lbm-lbm
Miz 4 namd-gromacs-leslie-bwaves-cactus-sjeng-mcf-namd
Miz 5  milc-zeusmp-sjeng-sjeng-leslie-leslie-namd-namd
Miz 6  milc-milc-namd-namd-lbm-lbm-mcf-mcf

Miz 7  zeus-zeus-milc-gems-gems-mcf-gromacs-bwaves
Miz 8 namd-namd-gromacs-gromacs-milc-milc-sjeng-sjeng

Table 3: Workload Mix

detailed memory system, DRAMSim2 [17]. All aspects of
DRAM device operation are accurately modeled using state
machines. Since the main memory is now placed on chip,
we run it at a higher clock speed but all timing parameters
remain the same. The parameters of our memory system
are shown in Table 2.

Our two schemes are evaluated using full system simula-
tion of modern benchmark programs. We combined individ-
ual programs from SPEC 2006 suite to construct memory-
intensive multiprogram workloads. The threads were cho-
sen according to the profile of [8]. We ran all benchmarks
to approximately 1 billion instructions before checkpointing.
Each workload has eight threads running on the reference in-
put set. The thread composition of the workloads is shown
in Table 3.

Before doing detailed simulation for 100 million instruc-
tions, our simulator fast forwards the simulation by 25 mil-
lion instructions to warm-up the caches. Doing so averts
bias in our results as streaming accesses to fill-in cold caches
could disrupt DMR3D algorithms. Additionally, we scale
down cache sizes to optimize simulation time, as done in [18].

For performance evaluation we used the Fair-Speedup (F'S)
[4] metric as it provides a better measure of the overall sys-
tem improvement. FS is essentially the harmonic mean of
speedups seen in individual threads. More details about the
FS metric are discussed in Section S1. We also evaluate
communication energy improvement using the McPAT [10]
framework.

6. RESULTS

In this section, we present the results from our experi-
ments. We show the increase in local accesses, performance
and communication energy improvement of DMR3D against
a baseline configuration.

6.1 DMR3D Schemes

We present results for four different schemes: baseline,
GS, TODS, and Perfect. Perfect is the same as GS except
that there are no restrictions on the number of page migra-
tions per epoch and migrations incur no overhead. This is
equivalent to an OS that can almost perfectly predict forth-
coming memory accesses and bring those data closer to the
processor. Our results show that this is enough to establish

an upper-bound performance on our schemes. We use an
epoch length of 1 million cycles and migrate 200 pages per
epoch. We also compare our technique with Victim Repli-
cation (VR) [22], which attempts to improve cache perfor-
mance using a data placement technique similar to DMR3D.

Since the goal of DMR3D is to increase the overall system
locality, we first present results on the improvement of the
number of local accesses achieved by GS and TODS. Figure
8(a) shows that both GS and TODS can increase memory
access locality significantly across a range of benchmarks.
Except for miz 2 and mix 7, our schemes achieve at least
60% of the locality compared with the Perfect scheme. Mix
8 has the most locality increase at 97%, while miz 6 has
the lowest at 14%. Miz 6 has poor temporal and spatial
locality as even an ideal scheme would only obtain a 20%
increase. We omit VR in Fig. 8(a) as it does not affect page
placement.

Figure 8(b) shows the collective performance improvement
at the application level resulting from our proposed tech-
niques. We estimate the performance of these workloads us-
ing Fair Speedup (see Section 5). Except on miz & and mix
1, GS consistently outperforms TODS. GS performs better
because migration slots are appropriately allocated based on
global demand of the thread, while in TODS, slots can go
unused if a thread does not need a non-local memory page.
The best performance for GS and TODS are 71% in miz 8
and 29% in miz 4, respectively. It is worth noting that miz
8 and miz 4 are among the four workloads with the most
increase in locality. On an average, GS and TODS show
29% and 16% performance improvement in all benchmarks,
respectively.

VR’s performance improvement ranges from -6% to 5%.
Performance degradation happens when some threads are
favored at the expense of others. In some benchmarks, the
memory access pattern allows VR to speed up some threads.
These threads in turn can starve other slow-running threads
in the benchmark. The primary difference between VR (and
similar schemes) and DMR3D is that VR works at the cache
latency level, and is unable to optimize speedy access of
memory pages through the vertical interconnect.

6.2 Communication Energy

We show in Figure 8(c) the percentage improvement in
communication energy when using the DMR3D schemes.
Except for mix 7, all schemes show good improvements. The
maximum improvement is achieved by GS on miz 5 at 48%.
Benchmark mixz 7 shows a degradation on GS and TODS.
This degradation can be attributed to the program behav-
ior changing its access patterns because the Perfect scheme
shows a good improvement, increasing its total energy. On
an average, we see an improvement of 25%, 17% and 45%
for GS, TODS and Perfect, respectively.

Figure 9 shows the breakdown of the energy spent on
memory access. The energy consumption was obtained us-
ing both the DRAMSim?2 and McPat tools. The bars in each
cluster represent the schemes evaluated. From left to right,
they are the baseline, GS, TODS and Perfect schemes. The
interconnect energy, which is used to send data across the
network, accounts for more than 50% of the total energy.
Note that since we are showing the breakdown in percent-
ages, our schemes show smaller reduction compared with
the baseline even though we have lowered the overall energy
consumption. Benchmarks miz 6 and miz 7 have higher or
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almost equal interconnect energy compared to the baseline.
This is consistent with our observation in Figure 8(c), where
the unpredictable access patterns from programs may occa-
sionally hurt the performance when using DMR3D schemes.

7. RELATED WORK

3D processor-memory integration has received a lot focus
in industry and academia recently. Loi et. al showed that
vertically integrating the processor and memory can achieve
an impressive 65% performance speedup [13]. Liu’s [11] work
obtained a 90+% speedup but focused mostly on different
cache-memory configurations for 3D architectures. However,
they do not consider accesses to the main memory, which
can be the source of a lot of traffic. In this context, Loh’s
work analyzed the performance improvement of aggressive
configurations of 3D DRAM systems [12]. None of these
works fully explore the context of a 3D NUMA multicore
system, where memory latency is significantly smaller than
the interconnect latency. We leveraged data from recent
literature [3,16,19] to accurately model NUMA parameters
for a 3D multicore system. The results of our work show
that there is a significant performance difference between a
system that is aware of data placement and one that is not.

8. CONCLUSION

In this work, we investigate the unique opportunities of ex-
ploiting the short vertical interconnect delay instead of long
horizontal interconnect delays in a 3D Multicore System. We
propose two schemes based on a hardware mechanism to dy-
namically migrate pages between distributed memory con-
trollers: GS and TODS. GS allocates migration slots based
on global demand of threads, while TODS insures fairness
by equally distributing migration slots. Our techniques show
30% and 25% average performance and communication en-
ergy improvements on real world applications.
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Supplemental Materials

S1. FAIR SPEEDUP

To measure the performance in our multiprogrammed work-
load, we use a metric called Fair Speedup (FS) [SR1]. FS is
defined as the harmonic mean of per-thread Speedups. We
use F'S as it follows the Pareto efficiency principle where im-
provements on the system should increase the performance
of all running threads.

FS(scheme) =

n

Additionally, F'S is a fair metric because the harmonic
mean of speedup rewards uniform improvements across all
threads while at the same time penalizing slow downs. Such
fairness is not exhibited by other metrics such as speedup of
aggregate IPCs (Aggipe)-

We give an example below to illustrate this point clearly.
In this example, there are 4 threads running with IPC values
indicated in Table 4. Suppose we introduce a scheme that
degrades the performance of the first three threads by 10%
while increasing the last one by 100%.

IPC1 IPC2 IPC3 IPC4 Aggi,. FS

4 ; ,
1.17 1.04

Setup

Baseline 1 2 3
NewScheme 0.9 1.8 2.7 8

Table 4: Sample IPC values

Both performance improvements from Aggipc and FS are
shown in the table (last two columns). Aggip. reports this as
an impressive 17% performance increase while F'S will report
this at a modest 4% improvement. We believe FS gives a
more accurate picture of the actual improvement because
outlier values cannot heavily influence the final speedup as
compared to other metrics based on arithmetic averages.

S2. PROFILING RESULTS

We present results for profiling of pages in Figure 10. We
show both the average and the maximum unique pages ac-
cessed in each epoch, where the trend in the maximum value
is 10-15x larger than the average value. Although the Pro-
file Table needs to accommodate the maximum number of
pages, on an average, it only uses a small fraction of its en-
tire capacity. This translates to a low overhead hardware
logic required to search for an entry in the table.

O GS average
1700 - GS max

X
<
5 700+
v 500
300+
100 t T t t T

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8
Benchmarks
Figure 10: Page reach of benchmarks using the Global
scheme. Both the average and maximum unique pages
per epoch are shown.

2
2154
205

t1 t2 t3 t4 t5 t6 t7 8
Thread IDs

Figure 11: Breakdown of # of mem instructions executed
for wl. Values relative to thread 7.

S2.1 TODS Rationale

TODS is largely motivated by the natural imbalance of
the thread execution speed present in different applications.
We show an example of this execution speed asymmetry in
Figure 11, where thread 3 has executed 7.5x more memory
instructions than thread 7. Other threads also exhibit vary-
ing number of memory instructions executed. With such
diverse demands on the memory, thread fairness can suffer
if less memory-demanding threads are not given migration
slots by DMR3D.

S3. SIZING PT AND ART

To estimate the practical size of PT, we obtained profiles
on how many unique pages are accessed by different threads
in each epoch. We show these data in Figure 10, where on an
average, most threads access less than 700+ unique pages in
a 1 million cycle epoch size. There are also outlier workloads
such as w7, which access at most 9500 unique pages in 1
epoch. To accommodate all workloads, we size the PT to be
10000 entries.

For the sizing of the ART, there are two factors to be
considered. First, the table must be as minimum as possible
to get less latency. Second, the size chosen must be enough
to hold address mappings of frequently accessed data, in
order to justify the cost of migration. We have experimented
many parameters and found that for most benchmarks, only
200 pages need to be migrated in each new epoch to saturate
the performance of DMR3D. We explore the design space of
DMRA3D to arrive at this choice (see Section S6).

S4. LATENCIES OF PT AND ART

Since the PT and ART are accessed for every memory
request, the latency to query these tables must not add sig-
nificant overhead to the overall memory access time. Using
CACTI 6.0 [SR2] at 45nm, we find that associative lookups
of these tables take 0.52ns and 0.30ns for PT and ART, re-
spectively. These overheads are negligible considering that
the average memory access times can reach 100ns.

S4.1 Memory Thrashing

In the context of DMR3D, thrashing can occur if data
are constantly being swapped between two same memory
banks such that the performance improvement is nullified by
the overhead of constantly migrating data. This is usually
caused by threads that share memory pages. However, mod-
ern parallel programs are designed to share data minimally
in order to harness multicore performance. Since thrashing
can degrade performance, we profile our benchmarks and
find that sharing of pages occurs less than 0.45% of the time.



SS. PAGE REMAPPING TECHNIQUE

In a system with multiple MCs, the whole address space
is divided into smaller contiguous address spaces such that
each memory controller services independent requests to dif-
ferent memory sections simultaneously. Figure 12 shows the
distribution of the memory address space across four MCs.
Memory rank 0 is managed by MCO, rank 1 by MC1 and
so forth. Note that we ignore other fields (Bank, Column
Id etc.) in the address to simplify our discussion. The two
MSBs in the address determine which MC manages its data.
As such, for DMR3D to migrate and move around memory
pages across memory controllers, it only needs to keep track
of the previous and new rank locations of the data.

We next show the sequence of events during the migration
of memory pages. The first step in migrating is to determine
the source MC where the page belongs. This is taken as the
two MSB in the address. The second step is to obtain the
new page number by replacing the rank field with the one
from the destination MC. All this information is then added
to the ART of the destination MC after data migration has
been done.

Once a page is listed for migration (i.e. alien page), the
original data (i.e. victim page) residing at the new location
must be evicted and moved to the previous address of the
alien page, effectively swapping the two pages. The victim
page undergoes the same process as the alien page but with
opposite source-destination locations. Requests for the wvic-
tim page arriving at the original MC will now be detected
by ART and then routed to the remote MC. Accordingly, re-
quest for victim page from the remote MC will be detected
by its own ART and treated as a local request.

Memory Address

rank

XXX ... XXXX
XXX ..o XXXX
XXX .o XXXX

XXX ... XXXX XXX ... XXXX XXX ... XXXX XXX ... XXXX

XXX ... XXXX XXX ... XXXX XXX ... XXXX XXX ... XXXX
XXX ... XXXX XXX ... XXXX XXX ... XXXX XXX ... XXXX

MC 0 MC 1 MC 2 MC 3

Figure 12: Memory Mapping across different MCs.

S6. DESIGN SPACE EXPLORATION

We performed two experiments: varying the number of
pages migrated per epoch and changing the epoch length.
To simplify our discussion, we use the term Migration Slot
Size (MSS) to refer to the total number of pages migrated
per epoch. The MSS values are chosen as 200, 400 and
800. These are taken from the range of values in our page
reach profile experiment (Fig. 10). The epoch lengths are
then chosen such that the migration overhead for the page
is around 10% of the whole epoch.

S6.1 Increasing Epoch Lengths

Figures 14 and 15 show the results for the design explo-
ration of GS and TODS. For an MSS of 200 and 400, increas-
ing the epoch length to 2M and 4M slightly decreases the

page from MC 0 to
KRX ... XXXX c be migrated to MC 3

~a
translate to new address
- XX)i e XXXX 9 by replacing rank field

XXX ... XXXX 9 new address of page

&» @ push original page #

F—ox0010 o107 and new rank in ART

0x0200
0x00BF
0x0010

0x0A00

Figure 13: Sequence of events for Address Translation.

performance by 0.8% and 2.5%, respectively. This degrada-
tion trend is also exhibited on TODS but with smaller values
(0.2 and 0.5%) on all MSS. The decrease in performance can
be caused by two things. First, the increase in epoch length
could increase the page reach of the program and can cause
interference on the profiles generated by the PT. This can do
more harm than good. Second, due to the dynamic nature
of programs, the profile used to predict accesses to locations
might only be useful at a fraction of the epoch length. As
such, when the MSS of GS is 800, there is now an average
of 4% improvement because it can handle the large page
reach of threads. Hence, increasing epoch lengths does not
automatically mean improved performance as it has to be
matched with a much larger MSS to accommodate the cor-
responding large page reach of running programs.

S6.2 Increasing Migration Slot Size

The same set of figures (Figures 14 and 15) show the re-
sults for increasing the MSS. We first discuss its effect on
GS and then on TODS. For epoch lengths of 1M and 2M,
using an MSS of 400 instead of 200, increases the perfor-
mance by 4.25% on an average. For a 4M epoch length, the
performance improvement drops to 3%. However, further
increasing the MSS to 800 pages hurts the performance be-
cause of the migration overhead. The performance drops for
1M and 2M epoch lengths are 6% and 0.35%, respectively.
The former has more degradation because a shorter epoch
length translates to less chances of using migrated data be-
fore another epoch is reached. To overcome the migration
overhead, we can use a 4M epoch length that increases per-
formance by 1.2%.

While GS experiences degradation on some configurations,
TODS consistently increases its performance with an in-
crease in MSS. On an average, it improves by 3% going from
an MSS of 200 to 400-pages and 400 to 800-pages. This im-
provement is the same for all epoch lengths. Although the
MSS for TODS is increased, each thread will use only the
migration slots if its ratio of local to non-local accesses fall
below the threshold. As such, the migration overhead is re-
duced to threads that need to migrate and performance is
realized.

S6.3 DMR3D Design Choice

From the results of our design space exploration, we chose
MSS to be 200-pages and epoch length to be 1 Million cy-
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Figure 15: Varying Epoch Sizes for TODS under different Migration Slot Sizes

cles. Although there is at most 5% average performance
improvement using larger MSS, we cannot justify its hard-
ware overhead on the ART size. For instance, using an MSS
of 800 can improve the GS by 5% but needs an ART that is
300% larger. Furthermore, using a larger ART could lead to
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